Molecular Characterization of Giardia duodenalis and Enterocytozoon bieneusi Isolated from Tibetan Sheep and Tibetan Goats Under Natural Grazing Conditions in Tibet

2019 ◽  
Vol 67 (1) ◽  
pp. 100-106 ◽  
Author(s):  
Yankai Chang ◽  
Yange Wang ◽  
Yayun Wu ◽  
Ziwen Niu ◽  
Jiakui Li ◽  
...  
Author(s):  
Sahana Kuthyar ◽  
Martin M. Kowalewski ◽  
Matthew Seabolt ◽  
Dawn M. Roellig ◽  
Thomas R. Gillespie

Author(s):  
Md Robiul Karim ◽  
Farzana Islam Rume ◽  
Dongfang Li ◽  
Junqiang Li ◽  
Longxian Zhang

2020 ◽  
Vol 9 (1) ◽  
pp. 54
Author(s):  
Salem Belkessa ◽  
Daniel Thomas-Lopez ◽  
Karim Houali ◽  
Farida Ghalmi ◽  
Christen Rune Stensvold

The molecular epidemiology of giardiasis in Africa remains unclear. A study was carried out across four hospitals in Algeria. A total of 119 fecal samples from 55 children, 37 adults, and 27 individuals of undetermined age, all scored positive for intestinal parasites by microscopy, and were screened by real-time PCR for Giardia. Molecular characterization of Giardia was performed by assemblage-specific PCR and PCR targeting the triose phosphate isomerase gene (tpi). Of the 119 samples, 80 (67%) were Giardia-positive by real-time PCR. For 48 moderately-highly real-time PCR-positive samples, tpi genotyping assigned 22 samples to Assemblage A and 26 to Assemblage B. Contrary to Assemblage A, Assemblage B exhibited substantial genetic diversity and allelic heterozygosity. Assemblage-specific PCR proved to be specific for discriminating Assemblage A or B but not as sensitive as tpi genotyping. We confirmed that real-time PCR is more sensitive than microscopy for detecting Giardia in stool samples and that robust amplification and sequencing of the tpi gene is feasible when moderate-to-strongly real-time PCR-positive samples are used. This study is one of the few performed in Africa providing genotyping data on Giardia infections in humans. Both assemblages A and B were commonly seen and not associated with specific sociodemographic data.


2011 ◽  
Vol 110 (1) ◽  
pp. 325-334 ◽  
Author(s):  
Flávio M. Paz e Silva ◽  
Marina M. Monobe ◽  
Raimundo S. Lopes ◽  
João P. Araujo Jr

2012 ◽  
Vol 79 (2) ◽  
pp. 449-459 ◽  
Author(s):  
Ana Luz Galván ◽  
Angela Magnet ◽  
Fernando Izquierdo ◽  
Soledad Fenoy ◽  
Cristina Rueda ◽  
...  

ABSTRACTRecent studies suggest the involvement of water in the epidemiology ofCyclospora cayetanensisand some microsporidia. A total of 223 samples from four drinking water treatment plants (DWTPs), seven wastewater treatment plants (WWTPs), and six locations of influence (LI) on four river basins from Madrid, Spain, were analyzed from spring 2008 to winter 2009. Microsporidia were detected in 49% of samples (109/223),Cyclosporaspp. were detected in 9% (20/223), and both parasites were found in 5.4% (12/223) of samples. Human-pathogenic microsporidia were detected, includingEnterocytozoon bieneusi(C, D, and D-like genotypes),Encephalitozoon intestinalis,Encephalitozoon cuniculi(genotypes I and III), andAnncaliia algerae.C. cayetanensiswas identified in 17 of 20 samples. To our knowledge, this is the first study that shows a year-long longitudinal study ofC. cayetanensisin drinking water treatment plants. Additionally, data about the presence and molecular characterization of the human-pathogenic microsporidia in drinking water, wastewater, and locations of influence during 1 year in Spain are shown. It is noteworthy that although the DWTPs and WWTPs studied meet European and national regulations on water sanitary quality, both parasites were found in water samples from these plants, supporting the idea that new and appropriate controls and regulations for drinking water, wastewater, and recreational waters should be proposed to avoid health risks from these pathogens.


Sign in / Sign up

Export Citation Format

Share Document