assemblage b
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 17)

H-INDEX

21
(FIVE YEARS 1)

2022 ◽  
Vol 8 ◽  
Author(s):  
Pamela C. Köster ◽  
Eva Martínez-Nevado ◽  
Andrea González ◽  
María T. Abelló-Poveda ◽  
Hugo Fernández-Bellon ◽  
...  

We assessed the occurrence, genetic diversity, and zoonotic potential of four protozoan (Cryptosporidium spp., Entamoeba histolytica, Entamoeba dispar, Giardia duodenalis), one stramenopile (Blastocystis sp.), one microsporidia (Enterocytozoon bieneusi), and two ciliate (Balantioides coli, Troglodytella abrassarti) intestinal parasite or commensal protist species in captive non-human primates (NHP) and their zookeepers from six European zoological gardens in France (n = 1), Germany (n = 1), and Spain (n = 4). Faecal samples from NHP (n = 454) belonging to 63 species within 35 genera and humans (n = 70) were collected at two sampling periods in each participating institution between October 2018-August 2021. Detection and species identification was accomplished by PCR and Sanger sequencing of the ssu rRNA and/or ITS genes. Sub-genotyping analyses using specific markers were conducted on isolates positive for G. duodenalis (gdh, bg, tpi) and Cryptosporidium spp. (gp60). Overall, 41.0% (186/454) and 30.0% (21/70) of the faecal samples of NHP and human origin tested positive for at least one intestinal protist species, respectively. In NHP, Blastocystis sp. was the most prevalent protist species found (20.3%), followed by G. duodenalis (18.1%), E. dispar (7.9%), B. coli and T. abrassarti (1.5% each), and Cryptosporidium spp. and E. bieneusi (0.9% each). Occurrence rates varied largely among NHP host species, sampling periods, and zoological institutions. The predominant protist species found in humans was Blastocystis sp. (25.7%), followed by Cryptosporidium spp. (2.9%), E. dispar (1.4%), and G. duodenalis (1.4%). Sequencing of PCR-positive amplicons in human and/or NHP confirmed the presence of Cryptosporidium in six isolates (C. hominis: 66.7%, C. parvum: 33.3%), G. duodenalis in 18 isolates (assemblage A: 16.7%, assemblage B: 83.3%), Blastocystis in 110 isolates (ST1:38.2%, ST2:11.8%, ST3: 18.2%, ST4: 9.1%, ST5: 17.3%, ST8: 2.7%, ST13: 0.9%), and E. bieneusi in four isolates (CM18: 75.0%, Type IV: 25.0%). Zoonotic transmission events involving Blastocystis ST1–ST4 were identified in four zoological institutions. Zoonotic transmission of C. hominis was highly suspected, but not fully demonstrated, in one of them. Monitoring of intestinal protist species might be useful for assessing health status of captive NHP and their zookeepers, and to identify transmission pathways of faecal-orally transmitted pathogens.


2021 ◽  
Vol 26 (35) ◽  
Author(s):  
Davide Resi ◽  
Stefania Varani ◽  
Anna Rosa Sannella ◽  
Alessandra M De Pascali ◽  
Margherita Ortalli ◽  
...  

Giardiasis, the disease caused by the flagellate Giardia duodenalis (syn. G.lamblia, G. intestinalis), is the most commonly reported among the five food- and waterborne parasitic diseases under mandatory surveillance in 24 EU countries. From November 2018 to April 2019, an outbreak of giardiasis occurred in a municipality of the Bologna province, in north-eastern Italy. Microscopy and immunochromatography identified cysts and antigens, respectively, of the parasite in stool samples of 228 individuals. Molecular typing of 136 stool samples revealed a vast predominance (95%) of G. duodenalis assemblage B. Investigations into potential sources indicated tap water as the most likely vehicle of infection, although cysts were not detected in water samples. Control measures mostly aimed at preventing secondary transmission by informing citizens about the outbreak, and by treatment of patients with anti-parasitic drugs. This is the first documented human outbreak of giardiasis in Italy; its investigation has highlighted the difficulties in the timely detection and management of this parasite, which is often overlooked as a cause of human gastroenteritis. The long and variable incubation time, absence of specific symptoms and a general lack of awareness about this pathogen contributed to delay in diagnosis.


Author(s):  
Marwa Chourabi ◽  
Sonia Boughattas ◽  
Atiyeh M. Abdallah ◽  
Ahmed Ismail ◽  
Jerzy M. Behnke ◽  
...  

BackgroundGiardia duodenalis is a common human intestinal parasite worldwide, and the causative agent of diarrhea, with the severity of disease ranging from asymptomatic to intense and debilitating infection. G. duodenalis is known to consist of eight genetically distinct assemblages, named from A to H. No data available on the genotypes and genetic diversity of G. duodenalis circulating in Qatar.MethodsWe genotyped 54 human Giardia isolates, collected from asymptomatic immigrants in Qatar, using a multilocus genotyping (MLGs) tool. We also investigated relationships between the subjects’ genotypes and their demographic data.ResultsGenomic DNA from 54 isolates were tested by PCR and sequence analysis at three loci: glutamate dehydrogenase (gdh), β-giardin (bg) and triose phosphate (tpi)). Assemblage A was identified in nine (16.67%), assemblage B in thirty (55.55%), and a mixture of assemblages A+B in fifteen (27.78%) isolates. All assemblage A isolates, genotyped in different loci, were assigned to sub-assemblage AII, and six of them had MLGs AII-1 while one new MLG was identified in two isolates. Sequences of assemblage B isolates have high level of genetic diversity and high presence of heterogeneous peaks, especially within the gdh gene. No significant associations between genotypes and the immigrants’ demographic data were found due to the extensive number of new variants.ConclusionsMLGs was used herein to genotype 54 immigrant Giardia isolates. The high level of genetic variability found in our isolates hampered MLGs determination, more investigations are now required to consolidate our findings, and to enable a comprehensive understanding of the diversity within G. duodenalis assemblage B isolates.


Parasitologia ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 83-94
Author(s):  
Pamela Carolina Köster ◽  
Alejandro Dashti ◽  
Lucia Reh ◽  
Begoña Bailo ◽  
Marta Hernández-de-Mingo ◽  
...  

Asymptomatic carriage of diarrhoea-causing enteric protist parasites in the general population is poorly understood, particularly in medium- to high-income countries. This molecular epidemiological survey investigates the presence, molecular diversity, and household transmission of Giardia duodenalis, Cryptosporidium spp., Blastocystis sp., and Enterocystozoon bieneusi in schoolchildren aged 2–13 years (n = 74) and their legal guardians (n = 6) in Madrid, Spain. Enteroparasite detection and genotyping was conducted in stool samples by molecular (PCR and Sanger sequencing) methods. Potential associations linked to infections were investigated through epidemiological questionnaires. Giardia duodenalis was the most prevalent enteric parasite found (14%, 95% CI: 7.1–23), followed by Blastocystis sp. (10%, 95% CI: 6.2–22) and Cryptosporidium spp. (3.8%, 95% CI: 0.78–11). None of the participants tested positive for E. bieneusi. Sequence analyses revealed the presence of G. duodenalis assemblage B, sub-assemblage BIV in a single child. The three Cryptosporidium isolates obtained were assigned to C. hominis, two of them belonging to the gp60 subtype IbA10G2. Four Blastocystis subtypes were identified including ST2 (38%, 3/8), ST3 (25%, 2/8), ST4 (25%, 2/8), and ST8 (12%, 1/8). All G. duodenalis and Cryptosporidium isolates were detected in children only. Blastocystis ST3 and ST4 were circulating in members of the same household. Blastocystis carriage rates increased with the age of the participants. Presence of diarrhoea-causing enteric protists was common in apparently healthy children.


2021 ◽  
Vol 41 (2) ◽  
Author(s):  
Susanne Hempel ◽  
Burg Flemming

AbstractThe study area is located on the inner Agulhas Bank around Plettenberg Bay, southern Cape Province, South Africa (Fig. 1). The Agulhas Bank is a transitional environment between the cold-temperate Benguela Current regime of the south-eastern South Atlantic and the warm-temperate Agulhas Current regime of the south-western Indian Ocean. Three distinct faunal assemblages (A, B and C) were identified in the study area. These are aligned in three consecutive, coast-parallel belts, assemblage A forming the inshore belt, assemblage C the offshore belt and assemblage B the in-between belt. Assemblage A is composed of Textularia-group individuals and Pararotalia sp., Cibicides lobatulus and Planorbulina mediterranensis. It occupies the nearshore belt up to 50 m water depth in sediments composed of very fine, fine and medium sands, with some coarse and very coarse sands. Assemblage B is composed of Bolivina cf. pseudopunctata, Cassidulina laevigata, Ammonia beccarii, Bolivina tortuosa and Bulimina elongata. It occupies water depths from 50–70 m, but may locally extend down to 90 m and, within the bay itself, upward to 20 m in fine and very fine sands containing some medium sand and mud. Assemblage C is dominated by Cassidulina laevigata, Bolivina cf. pseudopunctata, Bulimina elongata and Ammonia beccarii. In contrast to assemblage B which is dominated by B. cf. pseudopunctata, assemblage C is dominated by C. laevigata. Assemblage C is mainly confined to water depths of 70–100 m in sediments dominated by very fine sand (0.063–0.125 mm) containing some coarser sediment and mud. The distribution of the forams with respect to water depth, sediment composition and other environmental parameters suggests that it is mainly controlled by a combination of environmental parameters. No tangible relationship was found between the open shelf foraminifer communities and those of estuaries and lagoons along the South African coast.


2021 ◽  
Vol 15 (3) ◽  
pp. e0009277
Author(s):  
Andreas Woschke ◽  
Mirko Faber ◽  
Klaus Stark ◽  
Martha Holtfreter ◽  
Frank Mockenhaupt ◽  
...  

Background Giardia duodenalis is a leading cause of gastroenteritis worldwide. Humans are mainly infected by two different subtypes, i.e., assemblage A and B. Genotyping is hampered by allelic sequence heterozygosity (ASH) mainly in assemblage B, and by occurrence of mixed infections. Here we assessed the suitability of current genotyping protocols of G. duodenalis for epidemiological applications such as molecular tracing of transmission chains. Methodology/Principal findings Two G. duodenalis isolate collections, from an outpatient tropical medicine clinic and from several primary care laboratories, were characterized by assemblage-specific qPCR (TIF, CATH gene loci) and a common multi locus sequence typing (MLST; TPI, BG, GDH gene loci). Assemblage A isolates were further typed at additional loci (HCMP22547, CID1, RHP26, HCMP6372, DIS3, NEK15411). Of 175/202 (86.6%) patients the G. duodenalis assemblage could be identified: Assemblages A 25/175 (14.3%), B 115/175 (65.7%) and A+B mixed 35/175 (20.0%). By incorporating allelic sequence heterozygosity in the analysis, the three marker MLST correctly identified 6/ 9 (66,7%) and 4/5 (80.0%) consecutive samples from chronic assemblage B infections in the two collections, respectively, and identified a cluster of five independent patients carrying assemblage B parasites of identical MLST type. Extended MLST for assemblage A altogether identified 5/6 (83,3%) consecutive samples from chronic assemblage A infections and 15 novel genotypes. Based on the observed A+B mixed infections it is estimated that only 75% and 50% of assemblage A or B only cases represent single strain infections, respectively. We demonstrate that typing results are consistent with this prediction. Conclusions/Significance Typing of assemblage A and B isolates with resolution for epidemiological applications is possible but requires separate genotyping protocols. The high frequency of multiple infections and their impact on typing results are findings with immediate consequences for result interpretation in this field.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 179
Author(s):  
Zhaohui Cui ◽  
Deguo Wang ◽  
Wen Wang ◽  
Ying Zhang ◽  
Bo Jing ◽  
...  

Giardia duodenalis is a major gastrointestinal parasite found globally in both humans and animals. This work examined the occurrence of G. duodenalis in coypus (Myocastor coypus) in China. Multi-locus analysis was conducted to evaluate the level of genetic variation and the potential zoonotic role of the isolates. In total, 308 fecal samples were collected from seven farms in China and subjected to PCR screening to reveal G. duodenalis. Notably, G. duodenalis was detected in 38 (12.3%) specimens from assemblages A (n = 2) and B (n = 36). Positive samples were further characterized by PCR and nucleotide sequencing of the triose phosphate isomerase (tpi), beta giardin (bg), and glutamate dehydrogenase (gdh) genes. Multi-locus genotyping yielded 10 novel multi-locus genotypes (MLGs) (one MLG and nine MLGs for assemblages A and B, respectively). Based on the generated phylogenetic tree, AI–novel 1 clustered more closely with MLG AI-2. Furthermore, within the assemblage B phylogenetic analysis, the novel assemblage B MLGs were identified as BIV and clustered in the MLG BIV branch. This is the first report of G. duodenalis in coypus in China. The presence of zoonotic genotypes and subtypes of G. duodenalis in coypus suggests that these animals can transmit human giardiasis.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Shabnam Thakur ◽  
Upninder Kaur ◽  
Rakesh Sehgal

Abstract Objective The aim of study was to characterize Giardia isolates genetically among patients in Chandigarh region, India. For this, nested PCR targeting fragment of the glutamate dehydrogenase (GLUD1 earlier named as GDH) gene was used. Phylogenetic analysis was done by constructing neighbor-joining tree made out of the nucleotide sequences of G. intestinalis isolates obtained in this study and with the known sequences published in GenBank. Results Out of 40 samples, GLUD1 gene was amplified in 33 samples (82.5%). The product of GLUD1 gene was successfully sequenced only in 32 samples. In these samples, assemblage B was found in 27 (84.37%) samples whereas 5 (15.6%) samples had assemblage A. Among assemblage B most of them were of BIII. Therefore, genotyping of Giardia would be helpful in conducting epidemiological studies.


2021 ◽  
Vol 15 (1) ◽  
pp. e0008987 ◽  
Author(s):  
Augusto Messa ◽  
Pamela C. Köster ◽  
Marcelino Garrine ◽  
Carol Gilchrist ◽  
Luther A. Bartelt ◽  
...  

Giardia duodenalis is an enteric parasite commonly detected in children. Exposure to this organism may lead to asymptomatic or symptomatic infection. Additionally, early-life infections by this protozoan have been associated with impaired growth and cognitive function in poor resource settings. The Global Enteric Multicenter Study (GEMS) in Mozambique demonstrated that G. duodenalis was more frequent among controls than in diarrhoeal cases (≥3 loosing stools in the previous 24 hours). However, no molecular investigation was conducted to ascertain the molecular variability of the parasite. Therefore, we describe here the frequency and genetic diversity of G. duodenalis infections in children younger than five years of age with and without diarrhoea from the Manhiça district in southern Mozambique enrolled in the context of GEMS. Genomic DNA from 757 G. duodenalis-positive stool samples by immunoassay collected between 2007–2012, were reanalysed by multiplex PCR targeting the E1-HP and C1-P21 genes for the differentiation of assemblages A and B. Overall, 47% (353) of the samples were successfully amplified in at least one locus. Assemblage B accounted for 90% (319/353) of all positives, followed by assemblage A (8%, 29/353) and mixed A+B infections (1%, 5/353). No association between the presence of a given assemblage and the occurrence of diarrhoea could be demonstrated. A total of 351 samples were further analysed by a multi-locus sequence genotyping (MLSG) approach at the glutamate dehydrogenase (gdh), ß-giardin (bg) and triose phosphate isomerase (tpi) genes. Overall, 63% (222/351) of samples were genotyped and/or sub-genotyped in at least one of the three markers. Sequence analysis revealed the presence of assemblages A (10%; 23/222) and B (90%; 199/222) with high molecular diversity at the nucleotide level within the latter; no mixed infections were identified under the MLSG scheme. Assemblage A sequences were assigned to sub-assemblages AI (0.5%, 1/222), AII (7%, 15/222) or ambiguous AII/AIII (3%, 7/222). Within assemblage B, sequences were assigned to sub-assemblages BIII (13%, 28/222), BIV (14%, 31/222) and ambiguous BIII/BIV (59%, 132/222). BIII/BIV sequences accumulated the majority of the single nucleotide polymorphisms detected, particularly in the form of double peaks at chromatogram inspection. This study demonstrated that the occurrence of gastrointestinal illness (diarrhoea) was not associated to a given genotype of G. duodenalis in Mozambican children younger than five years of age. The assemblage B of the parasite was responsible for nine out of ten infections detected in this paediatric population. The extremely high genetic diversity observed within assemblage B isolates was compatible with an hyperendemic epidemiological scenario where infections and reinfections were common. The obtained molecular data may be indicative of high coinfection rates by different G. duodenalis assemblages/sub-assemblages and/or genetic recombination events, although the exact contribution of both mechanisms to the genetic diversity of the parasite remains unknown.


Author(s):  
Matthew H. Seabolt ◽  
Konstantinos T. Konstantinidis ◽  
Dawn M. Roellig

Giardia duodenalis (syn. G. lamblia, G. intestinalis) is the causative agent of giardiasis, one of the most common diarrheal infections in humans. Evolutionary relationships among G. duodenalis genotypes (or subtypes) of assemblage B, one of two genetic assemblages causing the majority of human infections, remain unclear due to poor phylogenetic resolution of current typing methods. Here, we devised a methodology to identify new markers for a streamlined multi-locus sequence typing (MLST) scheme based on comparisons of all core genes against the phylogeny of whole-genome sequences (WGS). Our analysis identified three markers with comparable resolution to WGS data. Using newly designed PCR primers for our novel MLST loci, we typed an additional 68 strains of assemblage B. Analyses of these strains and previously determined genome sequences showed that genomes of this assemblage can be assigned to 16 clonal complexes, each with unique gene content that is apparently tuned to differential virulence and ecology. Obtaining new genomes of Giardia spp. and other eukaryotic microbial pathogens remains challenging due to difficulties in culturing the parasites in the laboratory. Hence, the methods described here are expected to be widely applicable to other pathogens of interest and advance understanding of their ecology and evolution. IMPORTANCE Giardia duodenalis assemblage B is a major waterborne pathogen and the most commonly identified genotype causing human giardiasis worldwide. The lack of morphological characters for classification requires the use of molecular techniques for strain differentiation, however, the absence of scalable and affordable NGS-based typing methods has prevented meaningful advancements in high resolution molecular typing for further understanding of the evolution and epidemiology of Assemblage B. Prior studies have reported high sequence diversity but low phylogenetic resolution at standard loci in Assemblage B, highlighting the necessity of identifying new markers for accurate and robust molecular typing. Data from comparative analyses of available genomes in this study identified three loci that together form a novel high-resolution typing scheme with high concordance to whole-genome-based phylogenomics and which should aid in future public health endeavors related to this parasite. In addition, data from newly characterized strains suggest evidence of biogeographic and ecologic endemism.


Sign in / Sign up

Export Citation Format

Share Document