Films based on Pectin, Gellan, EDTA, and bacteriocin‐like compounds produced by Streptococcus infantarius for the bacterial control in fish packaging

Author(s):  
Ángel‐Omar Pérez‐Arauz ◽  
Adriana‐Inés Rodríguez‐Hernández ◽  
Ma. Rocío López‐Cuellar ◽  
Víctor‐Manuel Martínez‐Juárez ◽  
Norberto Chavarría‐Hernández
1979 ◽  
Vol 6 (4) ◽  
pp. 515-522 ◽  
Author(s):  
Martin C. Robson
Keyword(s):  

2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Dorothea Taylor ◽  
George M Garrity

2021 ◽  
Author(s):  
Danisha Gallop ◽  
Karen Scanlon ◽  
Jeremy Ardanuy ◽  
Alexander B. Sigalov ◽  
Nicholas H. Carbonetti ◽  
...  

Whooping cough (pertussis) is a severe pulmonary infectious disease caused by the bacteria Bordetella pertussis . Pertussis infects an estimated 24 million people annually, resulting in >150,000 deaths. The NIH placed pertussis on the list of emerging pathogens in 2015. Antibiotics are ineffective unless administered before the onset of the disease characteristic cough. Therefore, there is an urgent need for novel pertussis therapeutics. We have shown that sphingosine-1-phosphate receptor (S1PR) agonists reduce pertussis inflammation, without increasing bacterial burden. Transcriptomic studies were performed to identify this mechanism and allow for the development of pertussis therapeutics which specifically target problematic inflammation without sacrificing bacterial control. These data suggested a role for triggering receptor expressed on myeloid cells-1 (TREM-1). TREM-1 cell surface receptor functions as an amplifier of inflammatory responses. Expression of TREM-1 is increased in response to bacterial infection of mucosal surfaces. In mice, B. pertussis infection results in TLR9-dependent increased expression of TREM-1 and its associated cytokines. Interestingly, S1PR agonists dampen pulmonary inflammation and TREM-1 expression. Mice challenged intranasally with B. pertussis and treated with ligand-dependent (LP17) and ligand-independent (GF9) TREM-1 inhibitors showed no differences in bacterial burden and significantly reduced TNF-α and CCL-2 expression compared to controls. Mice receiving TREM-1 inhibitors showed reduced pulmonary inflammation compared to controls indicating that TREM-1 promotes inflammatory pathology, but not bacterial control, during pertussis infection. This implicates TREM-1 as a potential therapeutic target for the treatment of pertussis.


2019 ◽  
Vol 86 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Hiroyuki Hagiwara ◽  
Rieko Ogura ◽  
Takeshi Fukumoto ◽  
Toshiaki Ohara ◽  
Mikio Tsuda ◽  
...  

Abstract The fungicide tolprocarb (TPC) is a melanin biosynthesis inhibitor, but it may also have another mode of action. Here in tests of TPC for inducing plant systemic acquired resistance (SAR), TPC induced promoter activity of the tobacco pathogenesis-related gene PR-1a in Arabidopsis thaliana and genes for PBZ1, β-1,3-glucanase, and chitinase 1 in the defense-related salicylic acid (SA) signaling pathway in rice, but not genes for the jasmonate signaling pathway. Probenazole (PBZ), a commercially used plant defense activator, induced genes in both signaling pathways. The antibacterial activity of TPC was equivalent to that of PBZ. Irrigation with 200 μM TPC prevented growth by Pseudomonas syringae pv. maculicola in A. thaliana, and 30 μM TPC inhibited Xanthomonas oryzae pv. oryzae growth in rice. The results of this study suggest that TPC functions not only as a melanin biosynthesis inhibitor but also as an SAR inducer and is applicable as a novel bacterial control agent that induces SAR activity in both A. thaliana and rice.


1991 ◽  
Vol 7 (10) ◽  
pp. 291-292
Author(s):  
Mike Service
Keyword(s):  

2016 ◽  
Vol 92 ◽  
pp. 55-65 ◽  
Author(s):  
R. Haidar ◽  
A. Deschamps ◽  
J. Roudet ◽  
C. Calvo-Garrido ◽  
E. Bruez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document