Molecular Detection of Stripe Rust Resistance Gene(s) in 115 Wheat Cultivars (lines) from the Yellow and Huai River Valley Wheat Region

2016 ◽  
Vol 164 (11-12) ◽  
pp. 946-958 ◽  
Author(s):  
Qian Li ◽  
Baotong Wang ◽  
Kaixiang Chao ◽  
Juan Guo ◽  
Jianrong Song ◽  
...  
Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 498 ◽  
Author(s):  
Wei Xi ◽  
Zongxiang Tang ◽  
Jie Luo ◽  
Shulan Fu

The rye (Secale cereale L.) 5R chromosome contains some elite genes that can be used to improve wheat cultivars. In this study, a set of 5RKu dissection lines was obtained, and 111 new PCR-based and 5RKu-specific markers were developed using the specific length amplified fragment sequencing (SLAF-seq) method. The 111 markers were combined with the 52 5RKu-specific markers previously reported, and 65 S. cereale Lo7 scaffolds were physically mapped to six regions of the 5RKu chromosome using the 5RKu dissection lines. Additionally, the 5RLKu arm carried stripe rust resistance gene(s) and it was located to the region L2, the same region where 22 5RKu-specific markers and 11 S. cereale Lo7 scaffolds were mapped. The stripe rust resistance gene(s) located in the 5RLKu arm might be new one(s) because its source and location are different from the previously reported ones, and it enriches the resistance source of stripe rust for wheat breeding programs. The markers and the S. cereale Lo7 scaffolds that were mapped to the six regions of the 5RKu chromosome can facilitate the utilization of elite genes on the 5R chromosome in the improvement of wheat cultivars.


Euphytica ◽  
2021 ◽  
Vol 217 (6) ◽  
Author(s):  
Maryam Tariq ◽  
Javed Iqbal Mirza ◽  
Shaukat Hussain ◽  
Naeela Qureshi ◽  
Kerrie Forrest ◽  
...  

Author(s):  
Shisheng Chen ◽  
Joshua Hegarty ◽  
Tao Shen ◽  
Lei Hua ◽  
Hongna Li ◽  
...  

AbstractKey messageThe stripe rust resistance geneYr34 was transferred to polyploid wheat chromosome 5AL from T. monococcumand has been used for over two centuries.Wheat stripe (or yellow) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is currently among the most damaging fungal diseases of wheat worldwide. In this study, we report that the stripe rust resistance gene Yr34 (synonym Yr48) is located within a distal segment of the cultivated Triticum monococcum subsp. monococcum chromosome 5AmL translocated to chromosome 5AL in polyploid wheat. The diploid wheat species Triticum monococcum (genome AmAm) is closely related to T. urartu (donor of the A genome to polyploid wheat) and has good levels of resistance against the stripe rust pathogen. When present in hexaploid wheat, the T. monococcum Yr34 resistance gene confers a moderate level of resistance against virulent Pst races present in California and the virulent Chinese race CYR34. In a survey of 1,442 common wheat genotypes, we identified 5AmL translocations of fourteen different lengths in 17.5% of the accessions, with higher frequencies in Europe than in other continents. The old European wheat variety “Mediterranean” was identified as a putative source of this translocation, suggesting that Yr34 has been used for over 200 years. Finally, we designed diagnostic CAPS and sequenced-based markers that will be useful to accelerate the deployment of Yr34 in wheat breeding programs to improve resistance to this devastating pathogen.


Sign in / Sign up

Export Citation Format

Share Document