First report of root rot disease on Solanum lycopersicum L. caused by Fusarium vanettenii in India

2021 ◽  
Author(s):  
Rubin Debbarma ◽  
Deeba Kamil ◽  
Bishnu Maya Bashyal ◽  
Shiv Pratap Choudhary ◽  
Prameeladevi Thokla
2018 ◽  
Vol 101 (1) ◽  
pp. 207-207 ◽  
Author(s):  
Ahmadu Tijjani ◽  
Siti Izera Ismail ◽  
Ahmad Khairulmazmi ◽  
Omar Dzolkhifli

2020 ◽  
Vol 168 (7-8) ◽  
pp. 375-379
Author(s):  
Li Han ◽  
Xuan Zhou ◽  
Yiting Zhao ◽  
Lixia Wu ◽  
Xiangrui Ping ◽  
...  

Plant Disease ◽  
2003 ◽  
Vol 87 (10) ◽  
pp. 1265-1265 ◽  
Author(s):  
M. E. Matheron ◽  
S. T. Koike

A new wilt and root rot disease was observed in 6 and 11 commercial fields of lettuce (Lactuca sativa) in western Arizona during the fall of 2001 and 2002, respectively. Distance between infested sites ranged from approximately 0.5 to 39 km. Five head lettuce cultivars as well as a red leaf lettuce cultivar were affected. Disease symptoms included yellowing and wilting of leaves, as well as stunting and plant death. The cortex of the crown and upper root of infected plants usually was decayed and reddish brown. Disease symptoms first appeared at the time of plant thinning and continued to develop up to plant maturity. Fusarium oxysporum was consistently isolated from symptomatic plant roots. Seeds of cv. Lighthouse were planted in nonsterile vermiculite within 3.0-cm-square × 7.0-cm-deep cells in a transplant tray and thinned to a single plant per cell. When the first true leaves were emerging, 10 individual seedlings were inoculated with a single-spore isolate of F. oxysporum recovered from diseased lettuce root cortex tissue. Inoculum was prepared by growing the fungus on potato dextrose agar in 100-mm-diameter × 15-mm-deep plastic petri dishes at 28°C with a 12-h photoperiod under fluorescent light. Once the fungus completely covered the agar surface, 50 ml of sterile distilled water was added to the dish, and the mycelia and conidia on the surface were scraped off the agar and suspended in the water. This fungal suspension was decanted, and a 2-ml aliquot containing 1.8 × 105 CFU was pipetted into the vermiculite near the stem of each lettuce seedling. Ten plants grown in noninfested vermiculite served as uninoculated controls. After inoculation, plants were maintained in a growth chamber at 28°C with a 12-h photoperiod under fluorescent light for 3 weeks. Symptoms of yellowing, wilt, vascular decay, and often plant death developed during the incubation period on all inoculated plants but not on control plants. Fusarium oxysporum was consistently reisolated from inoculated plants but not from uninoculated plants. The experiment was repeated and yielded the same results. A wilt and root rot disease of lettuce attributed to F. oxysporum f. sp. lactucae was first reported in Japan in 1967 (3) and subsequently in the United States (San Joaquin Valley of California) in 1993 (2), and Italy in 2002 (1). The researchers of the U.S. report did not cite the earlier work from Japan and described the pathogen as F. oxysporum f. sp. lactucum. The Arizona isolate used to demonstrate pathogenicity was of the same vegetative compatibility group as an isolate of the pathogen from lettuce in California reported in 1993. Several companies grow and harvest lettuce in Arizona and California. At the end of production and harvest in the fall, tractors, implements, and harvesting equipment are transported from the San Joaquin Valley in California to western Arizona. The similarity between the isolate of F. oxysporum f. sp. lactucae from western Arizona and the San Joaquin Valley of California suggest a possible introduction of the pathogen into Arizona from California, perhaps on soil adhering to farm equipment. To our knowledge, this is the first report of F. oxysporum f. sp. lactucae infecting lettuce in Arizona. References: (1) A. Garibaldi et al. Plant Dis. 86:1052, 2002. (2) J. C. Hubbard and J. S. Gerik. Plant Dis. 77:750, 1993. (3) T. Matuo and S. Motohashi. Trans. Mycol. Soc. Jpn. 8:13, 1967.


Plant Disease ◽  
2018 ◽  
Vol 102 (8) ◽  
pp. 1660 ◽  
Author(s):  
J. Wang ◽  
Z. Chai ◽  
Y. Bao ◽  
H. Wang ◽  
Y. Li ◽  
...  

Plant Disease ◽  
2016 ◽  
Vol 100 (12) ◽  
pp. 2526-2526 ◽  
Author(s):  
L. L. Cong ◽  
Y. Sun ◽  
J. M. Kang ◽  
M. N. Li ◽  
R. C. Long ◽  
...  

Plant Disease ◽  
2016 ◽  
Vol 100 (7) ◽  
pp. 1503 ◽  
Author(s):  
L. L. Cong ◽  
M. N. Li ◽  
Y. Sun ◽  
L. L. Cong ◽  
Q. C. Yang ◽  
...  

Plant Disease ◽  
2011 ◽  
Vol 95 (2) ◽  
pp. 222-222
Author(s):  
J. F. Liu ◽  
Y. Q. Cheng

Rhodiola sachalinensis (family Crassulaceae), a perennial herbaceous plant with adaptogenic properties, cardiopulmonary protective effects, and central nervous system activities, is widely used as a traditional Chinese medicine (3). R. sachalinensis naturally exists only above 1,500 m elevation in the mountain area of Changbai Mountain (average July temperature ≤10°C), China. Introduction and cultivation of R. sachalinensis has been carried out in several low-altitude districts of northeast China. From 2007 to 2010, severe root rot disease was observed on R. sachalinensis in Siping districts, Jilin, China. Approximately 75 to 95% of the fields were affected with root rot disease incidence ranging from 85 to 100% under conditions of high temperatures (24 to 30°C) and high humidity. As the disease progressed, brown lesions expanded on lateral and main roots, and aboveground tissues shriveled and died. Over the 4- to 5-year period from culture to harvest, root rot became more serious. Symptomatic plants were collected from Siping districts. Samples were rinsed in tap water, necrotic areas were excised and cut into 2-mm pieces, surface sterilized with 5% NaOCl for 30 s, and rinsed in four successive changes of sterile distilled water. A single fungus was isolated on potato dextrose agar (PDA). The fungus was white, then pink and cottony, with nearly round margins after 8 days (27°C). Hyphae were separate and hyaline but macroconidia were sparse and occurred in a false head. Conidiogenous cells were monophialides. Microconidia in chains were abundant and mostly nonseptate, oval to clavate, and measured 8.1 to 14.5 × 2.0 to 3.4 μm. Morphological characteristics suggested the isolate was Fusarium verticillioides (Gibberella fujikuroi), which differed from the reported root rot pathogen of R. sachalinensis, F. oxysporum by forming microconidia in chains (1). The sexual stage of F. verticillioides was not observed. The internal transcribed spacer (ITS) fragments were amplified using ITS1 and ITS4 as primers and the 351-bp sequence was deposited in GenBank (Accession No. HQ025928). The ITS sequence showed 100% nucleotide sequence identity with F. verticillioides (GenBank Accession No. AY188916.1.). For pathogenicity tests, the isolate was cultured on PDA for 8 days. Inoculations were performed on 15 healthy R. sachalinensis plants by spraying a conidial suspension (2.0 × 105 microconidia ml–1) on roots wounded with a metal needle (6 wounds cm–2) (2). Ten plants were mock inoculated with water. Plants were incubated in a growth chamber (25°C, 70 to 80% relative humidity, 300 μmol·m–2·s–1 light intensity, and a 12-h photoperiod). After 15 days, defoliation and root rot symptoms were similar to the original symptoms observed under field conditions. F. verticillioides was reisolated from the roots of infected plants. Control plants remained asymptomatic. To our knowledge, this is the first report of F. verticillioides on R. sachalinensis in China. References: (1) X. Y. Li et al. J. Northeast For. Univ. 34:12, 2003. (2) M. Ma. Syahit et al. Am. J. Appl. Sci. 6:902, 2009. (3) T. F. Yan et al. Conserv. Genet. 4:213, 2003.


Sign in / Sign up

Export Citation Format

Share Document