Divergent responses of functional diversity to an elevational gradient for vascular plants, bryophytes and lichens

Author(s):  
Johan Asplund ◽  
Kristel van Zuijlen ◽  
Ruben Erik Roos ◽  
Tone Birkemoe ◽  
Kari Klanderud ◽  
...  
2017 ◽  
Vol 14 (4) ◽  
pp. 694-704
Author(s):  
Xiang Xu ◽  
Hua-yong Zhang ◽  
Jian Luo ◽  
Dong-jie Zhang ◽  
Athen Ma

2018 ◽  
Vol 20 (1) ◽  
pp. 129 ◽  
Author(s):  
Eduardo De Rodrigues Coelho ◽  
Adriano Pereira Paglia ◽  
Arleu Barbosa Viana-Junior ◽  
Luiz A. Dolabela Falcão ◽  
Guilherme B. Ferreira

2019 ◽  
Vol 30 (5) ◽  
pp. 973-983 ◽  
Author(s):  
Yi Ding ◽  
Runguo Zang ◽  
Xinghui Lu ◽  
Jihong Huang ◽  
Yue Xu

2021 ◽  
Author(s):  
Kenny Helsen ◽  
Yeng-Chen Shen ◽  
Tsung-Yi Lin ◽  
Chien-Fan Chen ◽  
Chu-Mei Huang ◽  
...  

While the relative importance of climate filtering is known to be higher for woody species assemblages than herbaceous assemblage, it remains largely unexplored whether this pattern is also reflected between the woody overstory and herbaceous understory of forests. While climatic variation will be more buffered by the tree layer, the understory might also respond more to small-scale soil variation, next to experiencing additional environmental filtering due to the overstory's effects on light and litter quality. For (sub)tropical forests, the understory often contains a high proportion of fern and lycophyte species, for which environmental filtering is even less well understood. We explored the proportional importance of climate proxies and soil variation on the species, functional trait and (functional) diversity patterns of both the forest overstory and fern and lycophyte understory along an elevational gradient from 850 to 2100 m a.s.l. in northern Taiwan. We selected nine functional traits expected to respond to soil nutrient or climatic stress for this study and furthermore verified whether they were positively related across vegetation layers, as expected when driven by similar environmental drivers. We found that climate was a proportionally more important predictor than soil for the species composition of both vegetation layers and trait composition of the understory. The stronger than expected proportional effect of climate for the understory was likely due to fern and lycophytes' higher vulnerability to drought, while the high importance of soil for the overstory seemed driven by deciduous species. The environmental drivers affected different response traits in both vegetation layers, however, which together with additional overstory effects on understory traits, resulted in a strong disconnection of community-level trait values across layers. Interestingly, species and functional diversity patterns could be almost exclusively explained by climate effects for both vegetational layers, with the exception of understory species richness. This study illustrates that environmental filtering can differentially affect species, trait and diversity patterns and can be highly divergent for forest overstory and understory vegetation, and should consequently not be extrapolated across vegetation layers or between composition and diversity patterns.


Diversity ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 229
Author(s):  
Pablo Lozano ◽  
Omar Cabrera ◽  
Gwendolyn Peyre ◽  
Antoine Cleef ◽  
Theofilos Toulkeridis

The paramo is a unique and severely threatened ecosystem scattered in the high northern Andes of South America. However, several further, extra-Andean paramos exist, of which a particular case is situated on the active volcano Sumaco, in the northwestern Amazon Basin of Ecuador. We have set an elevational gradient of 600 m (3200–3800 m a.s.l.) and sampled a total of 21 vegetation plots, using the phytosociological method. All vascular plants encountered were typified by their taxonomy, life form and phytogeographic origin. In order to determine if plots may be ensembled into vegetation units and understand what the main environmental factors shaping this pattern are, a non-metric multidimensional scaling (NMDS) analysis was performed. In addition, species turnover was quantified in order to appreciate the quantity and sort of species which are responsible for the similarity or dissimilarity between vegetation units. Therefore, a SIMPER similarity percentage analysis was conducted. We encountered 68 plant species belonging to 54 genera and 31 families, of which three are Ecuadorian endemics. The most frequent life forms were erect herbs, rosette and tussocks, whereas the least were cushions. At genus level, 44% of the Sumaco paramo flora was of tropical origin, followed by temperate (33%) and finally cosmopolitan (22%). The neotropical montane element was the most represented with 15 species, followed by the Austral-Antarctic with ten, wide temperate with another ten and cosmopolitan with seven. Regarding vegetation, four floristically distinct groups were segregated being lower gradient (3250–3500 m a.s.l.) and high altitude (3500–3800 m a.s.l.)


2019 ◽  
Vol 25 (9) ◽  
pp. 1362-1374 ◽  
Author(s):  
Larissa Nowak ◽  
W. Daniel Kissling ◽  
Irene M. A. Bender ◽  
D. Matthias Dehling ◽  
Till Töpfer ◽  
...  

2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Jörg Albrecht ◽  
Alice Classen ◽  
Maximilian G. R. Vollstädt ◽  
Antonia Mayr ◽  
Neduvoto P. Mollel ◽  
...  

Biotropica ◽  
2016 ◽  
Vol 49 (2) ◽  
pp. 186-194 ◽  
Author(s):  
Cássio A. Nunes ◽  
André V. Quintino ◽  
Reginaldo Constantino ◽  
Daniel Negreiros ◽  
Ronaldo Reis Júnior ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document