scholarly journals Independent recruitment of a novel seed dispersal system by camel crickets in achlorophyllous plants

2017 ◽  
Vol 217 (2) ◽  
pp. 828-835 ◽  
Author(s):  
Kenji Suetsugu
Author(s):  
Mikihisa Yamada ◽  
Masaru Hojo ◽  
Akio Imamura

Seed dispersal by ants is an important means of migration for plants. Although many 34 myrmecochorous plants have seeds containing elaiosome, a nutritional reward for ants, some 35 non-myrmecochorous seeds without elaiosomes are also dispersed by ant species. However, the 36 mechanism by which seeds without elaiosomes enable efficient dispersal by ants is scarcely 37 investigated. The seeds of the achlorophyllous and myco-heterotrophic herbaceous plant 38 Monotropastrum humile are very small without elaiosomes and require a fungal host for 39 germination and survival. We performed a bioassay using seeds of M. humile and the ant 40 Nylanderia flavipes to demonstrate ant-mediated seed dispersal. We also analyzed the volatile 41 odors emitted from M. humile seeds and conducted bioassays using dummy seeds coated with 42 seed volatiles. Although elaiosomes were absent from the M. humile seeds, the ants carried the 43 seeds to their nests. They also carried the dummy seeds coated with the seed volatile mixture to 44 the nest, and left some dummy seeds inside the nest and discarded the rest of the dummy seeds 45 outside the nest with a bias toward locations with moisture conditions, which might be 46 conducive to germination. We concluded that seeds of M. humile were dispersed by the ants, 47 and that seed odors were sufficient to induce directed dispersal even without elaiosomes. It is 48 probable that the fleshy fruit producing genus Monotropastrum evolved from the related 49 anemochorous genus Monotropa, which produces capsule fruit. This transformation from 50 anemochory to myrmecochory presents a novel evolutionary pathway toward ant-mediated seed 51 dispersal in an achlorophyllous plant.


2008 ◽  
Vol 1 (1) ◽  
pp. 7-18
Author(s):  
Luciane Lopes de Souza

Biotic or abiotic processes of seed dispersal are important for the maintenance of the diversity, and for the natural regeneration in tropical forests. Ichthyochory is one of the fundamental mechanisms for seed dispersal in flooded environments, as the “igapó” forests. A study on the ichthyochory of the igapós was conducted at Amanã Sustainable Development Reserve, in the middle Solimões river, from June 2002 to September 2004. Monthly samples of frugivorous fish were taken, with the main fishing gears used locally. Guts of 1,688 fish caught were examined. The main species were Myloplus rubripinnis (29.21%), Hemiodus immaculatus (18.96%),Colossoma macropom um (16.23%) and Mylossoma duriventre (16.05%). The diet was made of vegetables (fruits, leave and flowers), and animals (arthropods). 53.02% of all fish caught ingested fruits. The total number of intact seeds in the stomachs and intestines were 8,069 and 5,763 respectively. About 61.9% of the Brycon melanopterus (matrinchão), 46.34% of the Brycon amazonicus (mamuri) and 30.22% of M . rubripinnis (parum ) analysed had intact seeds in their guts. Seeds of Nectandra amazonum and Genipa spruceana ingested proved to be more viable than those non-ingested by fish. The high rates of frugivory, the presence of intact seeds in the guts of fish and the greater viability of ingested seeds all suggest that these animals are important seed dispersors in the “igapó” forests of Amanã Reserve.


2005 ◽  
Vol 166 (3) ◽  
pp. 368 ◽  
Author(s):  
Katul ◽  
Porporato ◽  
Nathan ◽  
Siqueira ◽  
Soons ◽  
...  

2021 ◽  
Author(s):  
Loreto Martínez‐Baroja ◽  
Lorenzo Pérez‐Camacho ◽  
Pedro Villar‐Salvador ◽  
Salvador Rebollo ◽  
Alexandro B. Leverkus ◽  
...  

2021 ◽  
Author(s):  
Mikihisa Yamada ◽  
Masaru K. Hojo ◽  
Akio Imamura

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomohiro Fujita

AbstractThis study examined the mechanisms of facilitation and importance of seed dispersal during establishment of forest tree species in an Afrotropical woodland. Seedling survival of Syzygium guineense ssp. afromontanum was monitored for 2.5 years at four different microsites in savannah woodland in Malawi (southeastern Africa) under Ficus natalensis (a potential nurse plant), Brachystegia floribunda (a woodland tree), Uapaca kirkiana (a woodland tree), and at a treeless site. The number of naturally established forest tree seedlings in the woodland was also counted. Additionally, S. guineense ssp. afromontanum seed deposition was monitored at the four microsites. Insect damage (9% of the total cause of mortality) and trampling by ungulates (1%) had limited impact on seedling survival in this area. Fire (43%) was found to be the most important cause of seedling mortality and fire induced mortality was especially high under U. kirkiana (74%) and at treeless site (51%). The rate was comparatively low under F. natalensis (4%) and B. floribunda (23%), where fire is thought to be inhibited due to the lack of light-demanding C4 grasses. Consequently, seedling survival under F. natalensis and B. floribunda was higher compared with the other two microsites. The seedling survival rate was similar under F. natalensis (57%) and B. floribunda (59%). However, only a few S. guineense ssp. afromontanum seedlings naturally established under B. floribunda (25/285) whereas many seedlings established under F. natalensis (146/285). These findings indicate that the facilitative mechanism of fire suppression is not the only factor affecting establishment. The seed deposition investigation revealed that most of the seeds (85%) were deposited under F. natalensis. As such, these findings suggest that in addition to fire suppression, dispersal limitations also play a role in forest-savannah dynamics in this region, especially at the community level.


Sign in / Sign up

Export Citation Format

Share Document