scholarly journals Altered stomatal dynamics induced by changes in irradiance and vapour‐pressure deficit under drought: impacts on the whole‐plant transpiration efficiency of poplar genotypes

2019 ◽  
Vol 222 (4) ◽  
pp. 1789-1802 ◽  
Author(s):  
Maxime Durand ◽  
Oliver Brendel ◽  
Cyril Buré ◽  
Didier Le Thiec
2019 ◽  
Vol 46 (12) ◽  
pp. 1072 ◽  
Author(s):  
Geetika Geetika ◽  
Erik J. van Oosterom ◽  
Barbara George-Jaeggli ◽  
Miranda Y. Mortlock ◽  
Kurt S. Deifel ◽  
...  

Water scarcity can limit sorghum (Sorghum bicolor (L.) Moench) production in dryland agriculture, but increased whole-plant transpiration efficiency (TEwp, biomass production per unit of water transpired) can enhance grain yield in such conditions. The objectives of this study were to quantify variation in TEwp for 27 sorghum genotypes and explore the linkages of this variation to responses of the underpinning leaf-level processes to environmental conditions. Individual plants were grown in large lysimeters in two well-watered experiments. Whole-plant transpiration per unit of green leaf area (TGLA) was monitored continuously and stomatal conductance and maximum photosynthetic capacity were measured during sunny conditions on recently expanded leaves. Leaf chlorophyll measurements of the upper five leaves of the main shoot were conducted during early grain filling. TEwp was determined at harvest. The results showed that diurnal patterns in TGLA were determined by vapour pressure deficit (VPD) and by the response of whole-plant conductance to radiation and VPD. Significant genotypic variation in the response of TGLA to VPD occurred and was related to genotypic differences in stomatal conductance. However, variation in TGLA explained only part of the variation in TEwp, with some of the residual variation explained by leaf chlorophyll readings, which were a reflection of photosynthetic capacity. Genotypes with different genetic background often differed in TEwp, TGLA and leaf chlorophyll, indicating potential differences in photosynthetic capacity among these groups. Observed differences in TEwp and its component traits can affect adaptation to drought stress.


1996 ◽  
Vol 23 (5) ◽  
pp. 561 ◽  
Author(s):  
Hehui Zhang ◽  
PS Nobel

The leaf transpiration efficiency (A/E, where A is the assimilation rate and E the transpiration rate) is widely used to evaluate plant responses to the environment, yet little attention has been paid to its relationship with vapour pressure deficit (D), the driving force for E. The proposed model is based on the increasingly recognised linear relationship between the ratio of intercellular to ambient CO2 partial pressures (cI/ca) and D. Unlike previous models for A/E, the proposed model does not assume that the leaf and air temperatures are the same or that ci/ca is constant. A/E predicted by the model agreed with that measured for the C3 Encelia farinosa and the C4 Pleuraphis rigida, common species in the north-westem Sonoran Desert, based on gas exchange measured in the field and in environmental chambers. The dependency of cI/ca and A/E on D was additionally evaluated using published data for five other C3 species and two other C4 species. Generally, ci/ca was more sensitive to changes in D for the C4 species than the C3 species. The predictions for A/E by the model were also compared with predictions using a constant ci/ca, either a general cI/ca (0.7 for C3 and 0.3 for C4) or a species-dependent mean cI/ca. Overall, the proposed model performed best for both the C3 and C4 species; using the general cI/ca always resulted in an over-prediction of A/E.


1993 ◽  
Vol 171 (5) ◽  
pp. 336-342 ◽  
Author(s):  
V. Bala Subramanian ◽  
S. Venkateswarlu ◽  
M. Maheswari ◽  
M. Narayana Reddy

Sign in / Sign up

Export Citation Format

Share Document