scholarly journals Vapour pressure deficit during growth has little impact on genotypic differences of transpiration efficiency at leaf and whole-plant level: an example fromPopulus nigra L.

2014 ◽  
Vol 38 (4) ◽  
pp. 670-684 ◽  
Author(s):  
FAHAD RASHEED ◽  
ERWIN DREYER ◽  
BÉATRICE RICHARD ◽  
FRANCK BRIGNOLAS ◽  
OLIVER BRENDEL ◽  
...  
2019 ◽  
Vol 46 (12) ◽  
pp. 1072 ◽  
Author(s):  
Geetika Geetika ◽  
Erik J. van Oosterom ◽  
Barbara George-Jaeggli ◽  
Miranda Y. Mortlock ◽  
Kurt S. Deifel ◽  
...  

Water scarcity can limit sorghum (Sorghum bicolor (L.) Moench) production in dryland agriculture, but increased whole-plant transpiration efficiency (TEwp, biomass production per unit of water transpired) can enhance grain yield in such conditions. The objectives of this study were to quantify variation in TEwp for 27 sorghum genotypes and explore the linkages of this variation to responses of the underpinning leaf-level processes to environmental conditions. Individual plants were grown in large lysimeters in two well-watered experiments. Whole-plant transpiration per unit of green leaf area (TGLA) was monitored continuously and stomatal conductance and maximum photosynthetic capacity were measured during sunny conditions on recently expanded leaves. Leaf chlorophyll measurements of the upper five leaves of the main shoot were conducted during early grain filling. TEwp was determined at harvest. The results showed that diurnal patterns in TGLA were determined by vapour pressure deficit (VPD) and by the response of whole-plant conductance to radiation and VPD. Significant genotypic variation in the response of TGLA to VPD occurred and was related to genotypic differences in stomatal conductance. However, variation in TGLA explained only part of the variation in TEwp, with some of the residual variation explained by leaf chlorophyll readings, which were a reflection of photosynthetic capacity. Genotypes with different genetic background often differed in TEwp, TGLA and leaf chlorophyll, indicating potential differences in photosynthetic capacity among these groups. Observed differences in TEwp and its component traits can affect adaptation to drought stress.


1996 ◽  
Vol 23 (5) ◽  
pp. 561 ◽  
Author(s):  
Hehui Zhang ◽  
PS Nobel

The leaf transpiration efficiency (A/E, where A is the assimilation rate and E the transpiration rate) is widely used to evaluate plant responses to the environment, yet little attention has been paid to its relationship with vapour pressure deficit (D), the driving force for E. The proposed model is based on the increasingly recognised linear relationship between the ratio of intercellular to ambient CO2 partial pressures (cI/ca) and D. Unlike previous models for A/E, the proposed model does not assume that the leaf and air temperatures are the same or that ci/ca is constant. A/E predicted by the model agreed with that measured for the C3 Encelia farinosa and the C4 Pleuraphis rigida, common species in the north-westem Sonoran Desert, based on gas exchange measured in the field and in environmental chambers. The dependency of cI/ca and A/E on D was additionally evaluated using published data for five other C3 species and two other C4 species. Generally, ci/ca was more sensitive to changes in D for the C4 species than the C3 species. The predictions for A/E by the model were also compared with predictions using a constant ci/ca, either a general cI/ca (0.7 for C3 and 0.3 for C4) or a species-dependent mean cI/ca. Overall, the proposed model performed best for both the C3 and C4 species; using the general cI/ca always resulted in an over-prediction of A/E.


1993 ◽  
Vol 171 (5) ◽  
pp. 336-342 ◽  
Author(s):  
V. Bala Subramanian ◽  
S. Venkateswarlu ◽  
M. Maheswari ◽  
M. Narayana Reddy

2012 ◽  
Vol 39 (4) ◽  
pp. 306 ◽  
Author(s):  
Nouhoun Belko ◽  
Mainassara Zaman-Allah ◽  
Ndiaga Cisse ◽  
Ndeye Ndack Diop ◽  
Gerard Zombre ◽  
...  

As water availability is critical for reproduction, terminal drought tolerance may involve water-saving traits. Experiments were undertaken under different vapour pressure deficit (VPD) and water regimes (water stress (WS) and well watered (WW)) to test genotypic differences and trait relationships in the fraction of transpirable soil water (FTSW) at which transpiration declines, canopy conductance (proxied by transpiration rate (TR, g H2O cm–2 h–1)), canopy temperature depression (CTD, °C), transpiration efficiency (TE, g kg–1) and growth parameters, using 15 contrasting cowpea (Vigna unguiculata (L.) Walp.) genotypes. Under WW conditions at the vegetative and early podding stages, plant mass and leaf area were larger under low VPD, and was generally lower in tolerant than in sensitive genotypes. Several tolerant lines had lower TR under WW conditions and restricted TR more than sensitive lines under high VPD. Under WS conditions, transpiration declined at a lower FTSW in tolerant than in sensitive lines. Tolerant lines also maintained higher TR and CTD under severe stress. TE was higher in tolerant genotypes under WS conditions. Significant relationships were found between TR, and TE, CTD and FTSW under different water regimes. In summary, traits that condition how genotypes manage limited water resources discriminated between tolerant and sensitive lines. Arguably, a lower canopy conductance limits plant growth and plant water use, and allows tolerant lines to behave like unstressed plants until the soil is drier and to maintain a higher TR under severe stress, as lower TR at high VPD leads to higher TE.


Author(s):  
D Israel ◽  
S Khan ◽  
C R Warren ◽  
J J Zwiazek ◽  
T M Robson

Abstract The roles of different plasma membrane aquaporins (PIPs) in leaf-level gas exchange of Arabidopsis thaliana were examined using knockout mutants. Since multiple Arabidopsis PIPs are implicated in CO2 transport across cell membranes, we focused on identifying the effects of the knockout mutations on photosynthesis, and whether they are mediated through the control of stomatal conductance of water vapour (gs), mesophyll conductance of CO2 (gm) or both. We grew Arabidopsis plants in low and high humidity environments and found that the contribution of PIPs to gs was larger under low air humidity when the evaporative demand was high, whereas any effect of lacking PIP function was minimal under higher humidity. The pip2;4 knockout mutant had 44% higher gs than the wild type plants under low humidity, which in turn resulted in an increased net photosynthetic rate (Anet). We also observed a 23% increase in whole-plant transpiration (E) for this knockout mutant. The lack of functional AtPIP2;5 did not affect gs or E, but resulted in homeostasis of gm despite changes of humidity, indicating a possible role in regulating CO2 membrane permeability. CO2 transport measurements in yeast expressing AtPIP2;5 confirmed that this aquaporin is indeed permeable to CO2.


Sign in / Sign up

Export Citation Format

Share Document