Genodermatoses with teeth abnormalities

Oral Diseases ◽  
2020 ◽  
Vol 26 (5) ◽  
pp. 1032-1044
Author(s):  
Samar Khalil ◽  
Edward Eid ◽  
Lamia Hamieh ◽  
Tara Bardawil ◽  
Ziad Moujaes ◽  
...  
Keyword(s):  

e-GIGI ◽  
2014 ◽  
Vol 2 (2) ◽  
Author(s):  
Vigni Astria Laguhi ◽  
P. S. Anindita ◽  
Paulina N. Gunawan

Abstract: Malocclusions is a form of occlusions that deviates from the standard form which is accepted as a normal form and in Indonesia, the prevelence is still high enough. One of the ways to identify and assess the severity of malocclusions is using the Handicapping Malocclusion Assessment Record Index (HMAR). This study aims to describe the malocclusions patients of  RSGM Unsrat using the HMAR index. This is a descriptive study conducted at the RSGM Unsrat Manado. Research subjects which totaled 34 patient study models. Malocclusions assessment obtained by examination of the study sample according to HMAR index include the tooth defect in one jaw, the second jaw teeth abnormalities relationship in a state of occlusions, and dentofasial defect. Result of research on the teeth in one jaw irregularities showed the highest percentage of tooth loss. Abnormal jaw relations in a state of second gear in the region of the anterior occlusion showed the highest percentage in the form of excessive biting distance and in the posterior region of highest form of canines more distally. Dentofacial abnormalities showed the highest percentage in the form of palatal bite. Research malocclusions severity based on HMAR index showed the highest percentage of severe malocclusions are in need of care.Keywords: Malocclusions, Handicapping Malocclusion Assessment Record Index  Abstrak: Maloklusi adalah suatu bentuk oklusi yang menyimpang dari bentuk standar yang diterima sebagai bentuk normal dan di Indonesia prevalensinya masih cukup tinggi. Salah satu cara mengidentifikasi maloklusi dan menilai keparahan maloklusi  tersebut menggunakan Indeks Handiccaping Assessment Record (HMAR). Penelitian ini bertujuan untuk mengetahui gambaran maloklusi pasien RSGM Unsrat menggunakan Indeks HMAR. Penelitian ini bersifat deskriptif dan dilakukan di RSGM Unsrat Manado. Subjek penelitian berjumlah 34 model studi  pasien. Penilaian maloklusi diperoleh dengan pemeriksaan pada sampel penelitian berdasarkan indeks HMAR  meliputi penyimpangan gigi dalam satu rahang, kelainan hubungan gigi kedua rahang dalam keadaan oklusi, dan kelainan dentofasial. Hasil penelitian pada penyimpangan gigi dalam satu rahang menunjukkan persentase tertinggi pada kehilangan gigi. Kelainan hubungan gigi kedua rahang dalam keadaan oklusi menunjukkan di regio anterior persentase tertinggi berupa jarak gigit berlebih  dan diregio posterior tertinggi berupa gigi kaninus lebih ke distal. Kelainan dentofasial menunjukkan persentase tertinggi berupa palatal bite. Hasil penelitian tingkat keparahan maloklusi berdasarkan indeks HMAR menunjukkan persentase tertinggi pada maloklusi berat sangat memerlukan perawatan. Kata kunci: Maloklusi, Indeks Handicapping Malocclusion Assessment Record



2007 ◽  
Vol 24 (5) ◽  
pp. 551-554
Author(s):  
Agustí Toll ◽  
Marie-Claire Vincent ◽  
Patrick Calvas ◽  
Ramon M. Pujol


2008 ◽  
Vol 178 (3) ◽  
pp. 396-404 ◽  
Author(s):  
Hubert Simhofer ◽  
Robert Griss ◽  
Karl Zetner
Keyword(s):  


2019 ◽  
Vol 8 (3) ◽  
pp. 4485-4489

Dental diseases may be caused if the food taken stays in the corners of the mouth. It is important to analyze the dental images to improve and qualify medical images for correct diagnosis. The teeth abnormalities may fall into different categories such as dental implants, gum diseases, crack, bone grafting, and root canal. This work aims to identify the type of abnormalities using classification algorithms — image Processing Techniques, namely Enhancement, Segmentation, and Classification involved in this process of dental disease detection. Decorrelation Stretch, Wiener Filter, and Contrast Enhancement are some of the enhancement techniques which were used to improve the clarity of a dental image. Edge Detection, Otsu's Threshold, Region-Based Segmentation, and Texture filters are few of the image segmentation techniques. These are used to identify the defected area of an image, and then the type of abnormalities was classified using K-NN and SVM.



2017 ◽  
Vol 3 (5) ◽  
pp. e179 ◽  
Author(s):  
Andrea Accogli ◽  
Michele Iacomino ◽  
Francesca Pinto ◽  
Alessandro Orsini ◽  
Maria Stella Vari ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document