scholarly journals Genome‐wide quantitative trait loci reveal the genetic basis of cotton fibre quality and yield‐related traits in a Gossypium hirsutum recombinant inbred line population

2019 ◽  
Vol 18 (1) ◽  
pp. 239-253 ◽  
Author(s):  
Zhen Zhang ◽  
Junwen Li ◽  
Muhammad Jamshed ◽  
Yuzhen Shi ◽  
Aiying Liu ◽  
...  
Nematology ◽  
2018 ◽  
Vol 20 (6) ◽  
pp. 525-537
Author(s):  
Chunjie Li ◽  
Jialin Wang ◽  
Jia You ◽  
Xinpeng Wang ◽  
Baohui Liu ◽  
...  

Summary A recombinant inbred line population of soybean (Glycine max) was utilised to identify the quantitative trait loci (QTLs) determining the response to infection by two root-knot nematode species, Meloidogyne incognita and M. hapla, in glasshouse assays. QTL analysis detected seven major and four minor QTLs on seven soybean chromosomes ((Chrs) 1, 7, 8, 10, 14, 18, 20) explaining 6-41% phenotypic variance (PVE) for M. incognita root response and nematode reproduction. Three of the major QTLs, on Chrs 7, 10 and 18, were confirmed in previous reports and two major QTLs on Chrs 14 and 20 were detected for the first time. The QTL analysis with M. hapla provides the first report of a major QTL region mapped on Chr 7, explaining 70-82% PVE in M. hapla root response and nematode reproduction. These novel identified QTLs with flanking markers will be helpful in marker-assisted breeding for nematode resistance in soybean.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jianing You ◽  
Hang Liu ◽  
Surong Wang ◽  
Wei Luo ◽  
Lulu Gou ◽  
...  

Spike density (SD) is an agronomically important character in wheat. In addition, an optimized spike structure is a key basis for high yields. Identification of quantitative trait loci (QTL) for SD has provided a genetic basis for constructing ideal spike morphologies in wheat. In this study, two recombinant inbred line (RIL) populations (tetraploid RIL AM and hexaploid RIL 20828/SY95-71 (2SY)) previously genotyped using the wheat55K SNP array were used to identify SD QTL. A total of 18 QTL were detected, and three were major and one was stably expressed (QSd.sau-2SY-7A.2, QSd.sau-AM-5A.2, QSd.sau-AM-7B, and QSd.sau-2SY-2D). They can explain up to 23.14, 19.97, 12.00, and 9.44% of phenotypic variation, respectively. QTL × environment and epistatic interactions for SD were further analyzed. In addition, pyramiding analysis further revealed that there were additive effects between QSd.sau-2SY-2D and QSd.sau-2SY-7A.2 in 2SY, and QSd.sau-AM-5A.2 and QSd.sau-AM-7B in AM. Pearson’s correlation between SD and other agronomic traits, and effects of major or stable QTL on yield related traits indicated SD significantly impacted spike length (SL), spikelet number per spike (SNS) and kernel length (KL). Several genes related to spike development within the physical intervals of major or stable QTL were predicted and discussed. Collectively, our research identified QTL with potential applications for modern wheat breeding and broadening the genetic basis of SD.


Sign in / Sign up

Export Citation Format

Share Document