fiber quality
Recently Published Documents


TOTAL DOCUMENTS

807
(FIVE YEARS 338)

H-INDEX

39
(FIVE YEARS 5)

2022 ◽  
Vol 12 ◽  
Author(s):  
Muhammad Mubashar Zafar ◽  
Xue Jia ◽  
Amir Shakeel ◽  
Zareen Sarfraz ◽  
Abdul Manan ◽  
...  

The ever-changing global environment currently includes an increasing ambient temperature that can be a devastating stress for organisms. Plants, being sessile, are adversely affected by heat stress in their physiology, development, growth, and ultimately yield. Since little is known about the response of biochemical traits to high-temperature ambiance, we evaluated eight parental lines (five lines and three testers) and their 15 F1 hybrids under normal and high-temperature stress to assess the impact of these conditions over 2 consecutive years. The research was performed under a triplicate randomized complete block design including a split-plot arrangement. Data were recorded for agronomic, biochemical, and fiber quality traits. Mean values of agronomic traits were significantly reduced under heat stress conditions, while hydrogen peroxide, peroxidase, total soluble protein, superoxide dismutase, catalase (CAT), carotenoids, and fiber strength displayed higher mean values under heat stress conditions. Under both conditions, high genetic advance and high heritability were observed for seed cotton yield (SCY), CAT, micronaire value, plant height, and chlorophyll-a and b content, indicating that an additive type of gene action controls these traits under both the conditions. For more insights into variation, Pearson correlation analysis and principal component analysis (PCA) were performed. Significant positive associations were observed among agronomic, biochemical, and fiber quality-related traits. The multivariate analyses involving hierarchical clustering and PCA classified the 23 experimental genotypes into four groups under normal and high-temperature stress conditions. Under both conditions, the F1 hybrid genotype FB-SHAHEEN × JSQ WHITE GOLD followed by Ghuari-1, CCRI-24, Eagle-2 × FB-Falcon, Ghuari-1 × JSQ White Gold, and Eagle-2 exhibited better performance in response to high-temperature stress regarding the agronomic and fiber quality-related traits. The mentioned genotypes could be utilized in future cotton breeding programs to enhance heat tolerance and improve cotton yield and productivity through resistance to environmental stressors.


2022 ◽  
Vol 12 ◽  
Author(s):  
Saifullah Abro ◽  
Muhammad Rizwan ◽  
Zaheer Ahmed Deho ◽  
Shafiq Ahmed Abro ◽  
Mahboob Ali Sial

Heat stress in cotton reduces its productivity. The development of heat-tolerant cotton varieties having resilience against changing climate is feasible. The purpose of this study was to probe the genetic variability in upland cotton for heat tolerance, the association of cell membrane thermostability (CMT), stomata, and trichome size with cotton adaptation to high temperature and effective breeding strategy to advance the valued traits. Relative cell injury percentage (RCI%) in studied genotypes ranged from 39 to 86%. Seventeen genotypes were found heat tolerant on the basis of low RCI%, heat susceptibility index (HSI<1), higher number of boll/plant, and seed cotton yield (SCY). Scanning electron microscopy (SEM) of heat-tolerant genotypes revealed the presence of different size of stomata (21.57 to 105.04 μm2) and trichomes (177 to 782.6 μm) on leaves of selected genotypes. The regression analysis showed a strong and negative association of RCI% and stomata size with SCY. However, no association was observed between the trichome size, yield, and fiber traits. On the overall location basis, a significant genotype × environment interaction was observed. All selected genotypes produced a higher SCY as compared with check varieties. But the stability analysis showed that the high yielding genotypes NIA-M-30, NIA-80, NIA-83, and CRIS-342 were also wide adaptive with unit regression (bi∼1) and non-significant deviation from the regression line (S2d∼0). The ability for the combination of some heat-tolerant genotypes was estimated by using the line × tester method among nine hybrids along with their 3 testers (i.e., male) and 3 lines (i.e., females). Genotypes, CRIS-342 and NIA-Perkh, were observed as best general combiners for SCY with a negative general combining ability effects for RCI%. Five hybrids showed a positive specific combining ability and heterotic effects for studied traits and also found lowest for HSI. RCI% and SCY/plant displayed higher estimates of heritability and genetic advance, indicating the heritability due to additive gene effects and chances of effective selection. The identified heat-tolerant and wide adaptive germplasm can be further advanced and utilized in cotton breeding programs for developing heat-tolerant cultivars. Selection criteria involving CMT and stomata size concluded to be an effective strategy for the screening of heat-tolerant cotton.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Nan Wu ◽  
Jun Yang ◽  
Guoning Wang ◽  
Huifeng Ke ◽  
Yan Zhang ◽  
...  

Abstract Background The fiber yield and quality of cotton are greatly and periodically affected by water deficit. However, the molecular mechanism of the water deficit response in cotton fiber cells has not been fully elucidated. Results In this study, water deficit caused a significant reduction in fiber length, strength, and elongation rate but a dramatic increase in micronaire value. To explore genome-wide transcriptional changes, fibers from cotton plants subjected to water deficit (WD) and normal irrigation (NI) during fiber development were analyzed by transcriptome sequencing. Analysis showed that 3427 mRNAs and 1021 long noncoding RNAs (lncRNAs) from fibers were differentially expressed between WD and NI plants. The maximum number of differentially expressed genes (DEGs) and lncRNAs (DERs) was identified in fibers at the secondary cell wall biosynthesis stage, suggesting that this is a critical period in response to water deficit. Twelve genes in cotton fiber were differentially and persistently expressed at ≥ five time points, suggesting that these genes are involved in both fiber development and the water-deficit response and could potentially be used in breeding to improve cotton resistance to drought stress. A total of 540 DEGs were predicted to be potentially regulated by DERs by analysis of coexpression and genomic colocation, accounting for approximately 15.76% of all DEGs. Four DERs, potentially acting as target mimics for microRNAs (miRNAs), indirectly regulated their corresponding DEGs in response to water deficit. Conclusions This work provides a comprehensive transcriptome analysis of fiber cells and a set of protein-coding genes and lncRNAs implicated in the cotton response to water deficit, significantly affecting fiber quality during the fiber development stage.


2022 ◽  
Vol 12 ◽  
Author(s):  
Xueying Liu ◽  
Le Yang ◽  
Jinxia Wang ◽  
Yaqing Wang ◽  
Zhongni Guo ◽  
...  

Fiber quality and yield-related traits are important agronomic traits in cotton breeding. To detect the genetic basis of fiber quality and yield related traits, a recombinant inbred line (RIL) population consisting of 182 lines was established from a cross between Gossypium hirsutum cultivar CCRI35 and G. hirsutum race palmeri accession TX-832. The RIL population was deeply genotyped using SLAF-seq and was phenotyped in six environments. A high-density genetic linkage map with 15,765 SNP markers and 153 SSR markers was constructed, with an average distance of 0.30 cM between adjacent markers. A total of 210 fiber quality quantitative trait loci (QTLs) and 73 yield-related QTLs were identified. Of the detected QTLs, 62 fiber quality QTLs and 10 yield-related QTLs were stable across multiple environments. Twelve and twenty QTL clusters were detected on the At and Dt subgenome, respectively. Twenty-three major QTL clusters were further validated through associated analysis and five candidate genes of four stable fiber quality QTLs were identified. This study revealed elite loci influencing fiber quality and yield and significant phenotypic selection regions during G. hirsutum domestication, and set a stage for future utilization of molecular marker assisted breeding in cotton breeding programs.


2022 ◽  
Vol 82 ◽  
Author(s):  
M. A. Zia ◽  
S. H. Shah ◽  
S. Shoukat ◽  
Z. Hussain ◽  
S. U. Khan ◽  
...  

Abstract Vegetable oils have their specific physicochemical properties due to which they are playing vital role in human nutritional diet for health benefits. Cottonseed oil is obtained from various species of cotton seeds that are famous to be grown mainly for their fiber quality. The most prominently used specie is Gossypium hirsutum. It is obvious that the seeds of different variety of cotton vary as grown in diverse agroclimatic conditions with respect to oil, fats and protein contents. Cottonseed oil is routinely used for cooking and food manufacturing products. Cottonseed oil obtained after proper extraction/processing steps from crude state to refined oil in a variety of ways. Cotton crop is considered for their dual-use purpose, for fiber quality and oil production to promote health benefits in the world. Keeping in view the above facts, this review clearly demonstrated an overview about physicochemical and functional properties of cottonseed oil to promote health benefits associated with the use of this oil. The overall characteristics and all concerned health benefits of CSO will further improve their usefulness is a compact way. We have summarized a brief multi-dimensional features of CSO in all aspects up to the best of our knowledge for the end researchers who can further research in the respective aspect.


2022 ◽  
Vol 275 ◽  
pp. 108325
Author(s):  
Huijie Li ◽  
Jiawei Wang ◽  
Xiaolin Huang ◽  
Zhiguo Zhou ◽  
Shanshan Wang ◽  
...  

2022 ◽  
Vol 82 ◽  
Author(s):  
M. Arif ◽  
N. Hussain ◽  
A. Yasmeen ◽  
S. Naz ◽  
A. Anwar ◽  
...  

Abstract Optimum planting arrangement is an important attribute for efficient utilization of available resources and to obtain high yield of cotton. Application of plant growth promoter and retardant on cotton in improved planting density are the innovative techniques in the establishment of more productive cotton crop. Therefore, we planned a field study to assess the role of bio-stimulant and growth retardant in the resource utilization efficiency of cotton cultivars planted under variable row spacing at Agronomic Research Area Bahauddin Zakariya University and Usmania Agricultural Farm Shujabad during Kharif 2012. Experimental treatments consisted of cotton genotypes viz. CIM-573 and CIM-598, cultivated under conventional (75 cm), medium (50 cm) and ultra-narrow row spacing (25 cm) with foliar spray of bio-stimulant (moringa leaf extract) and growth retardant (mepiquate chloride), either sole or in combination, keeping distilled water as a control. Exogenously applied MLE alone and MLE + MC significantly enhanced the number of squares, flowers and green bolls per plant leading to higher cotton seed and lint yield of CIM 598 cultivar cultivated under conventional row spacing. While application of MC alone and MLE + MC produced maximum micronaire value, fiber strength and fiber uniformity ratio of CIM 573 cultivar cultivated under conventional row spacing. The results suggested that application of MLE is a possible approach to enhance the cotton productivity and the use of MC to enhance the fiber quality attributes under conventional row spacing.


2021 ◽  
Vol 1 (4) ◽  
pp. 47-54
Author(s):  
Anvar Dzuraev ◽  
Sardor Sayitkulov ◽  
Bekzod Bozorov ◽  
Sitora Fatullaeva

The article included information on how to improve the working bodies of the machine for cleaning raw cotton, including large waste mixtures waste disposal sites. Based on the analysis of the design of cotton ginning machines and working bodies, a new effective design scheme of cotton gin from large contaminants was developed. The recommended multi-faceted columns are characterized by good cleaning of cotton waste and maintenance of fiber quality.


2021 ◽  
Vol 12 ◽  
Author(s):  
Huan Mei ◽  
Bowen Qi ◽  
Zegang Han ◽  
Ting Zhao ◽  
Menglan Guo ◽  
...  

As two cultivated widely allotetraploid cotton species, although Gossypium hirsutum and Gossypium barbadense evolved from the same ancestor, they differ in fiber quality; the molecular mechanism of that difference should be deeply studied. Here, we performed RNA-seq of fiber samples from four G. hirsutum and three G. barbadense cultivars to compare their gene expression patterns on multiple dimensions. We found that 15.90–37.96% of differentially expressed genes showed biased expression toward the A or D subgenome. In particular, interspecific biased expression was exhibited by a total of 330 and 486 gene pairs at 10 days post-anthesis (DPA) and 20 DPA, respectively. Moreover, 6791 genes demonstrated temporal differences in expression, including 346 genes predominantly expressed at 10 DPA in G. hirsutum (TM-1) but postponed to 20 DPA in G. barbadense (Hai7124), and 367 genes predominantly expressed at 20 DPA in TM-1 but postponed to 25 DPA in Hai7124. These postponed genes mainly participated in carbohydrate metabolism, lipid metabolism, plant hormone signal transduction, and starch and sucrose metabolism. In addition, most of the co-expression network and hub genes involved in fiber development showed asymmetric expression between TM-1 and Hai7124, like three hub genes detected at 10 DPA in TM-1 but not until 25 DPA in Hai7124. Our study provides new insights into interspecific expression bias and postponed expression of genes associated with fiber quality, which are mainly tied to asymmetric hub gene network. This work will facilitate further research aimed at understanding the mechanisms underlying cotton fiber improvement.


2021 ◽  
pp. 004051752110569
Author(s):  
Małgorzata Zimniewska ◽  
Wanda Różańska ◽  
Anna Kicińska-Jakubowska ◽  
Jerzy Mańkowski ◽  
Marek Wiśniewski ◽  
...  

The study explored the impact of the hydrodynamic degumming process applied for decorticated monomorphic flax on fiber quality. The experiment was designed as the first stage of research leading to the development of a method for decorticated flax fiber elementarization and cottonization; in particular, effectively dividing the fiber bundles to ensure low linear density and reducing impurities in the content, to make the fibers suitable for cotton spinning systems. The degumming process of the decorticated fibers covered hydrodynamic disposal of the gluing substances, mainly pectins from the fibers, with use of a specially designed lab-scale Model Device for Physical Degumming of the Flax Fibers. The degummed fibers were tested for linear density, length, impurity content and chemical composition by thermogravimetric analysis combined with the analysis of evolved gases (Fourier transform infrared spectroscopy) and analysis of images of fiber cross-sections and longitudinal views from a scanning electron microscope. The study outcomes allowed us to determine the optimal parameters of the degumming process applied for decorticated flax fibers, in which the obtained fibers were of the highest quality. It was found that the optimal parameters of the process were a bath temperature of 30°C and a degumming process duration of 24 hours. These lab-scale process conditions were used in further work on the degumming process of flax fiber carried out on a semi-technical scale, followed by a mechanical cottonization of the fiber, at the final stage of the technological chain.


Sign in / Sign up

Export Citation Format

Share Document