scholarly journals The contribution of PIP2-type aquaporins to photosynthetic response to increased vapour pressure deficit

Author(s):  
D Israel ◽  
S Khan ◽  
C R Warren ◽  
J J Zwiazek ◽  
T M Robson

Abstract The roles of different plasma membrane aquaporins (PIPs) in leaf-level gas exchange of Arabidopsis thaliana were examined using knockout mutants. Since multiple Arabidopsis PIPs are implicated in CO2 transport across cell membranes, we focused on identifying the effects of the knockout mutations on photosynthesis, and whether they are mediated through the control of stomatal conductance of water vapour (gs), mesophyll conductance of CO2 (gm) or both. We grew Arabidopsis plants in low and high humidity environments and found that the contribution of PIPs to gs was larger under low air humidity when the evaporative demand was high, whereas any effect of lacking PIP function was minimal under higher humidity. The pip2;4 knockout mutant had 44% higher gs than the wild type plants under low humidity, which in turn resulted in an increased net photosynthetic rate (Anet). We also observed a 23% increase in whole-plant transpiration (E) for this knockout mutant. The lack of functional AtPIP2;5 did not affect gs or E, but resulted in homeostasis of gm despite changes of humidity, indicating a possible role in regulating CO2 membrane permeability. CO2 transport measurements in yeast expressing AtPIP2;5 confirmed that this aquaporin is indeed permeable to CO2.

2019 ◽  
Author(s):  
D. Israel ◽  
S. Khan ◽  
C.R. Warren ◽  
J.J. Zwiazek ◽  
T.M. Robson

AbstractRoles of three different plasma membrane aquaporins (PIPs) in leaf-level gas exchange of Arabidopsis thaliana were examined using single, double and triple knockout mutants and compared to the Columbia-0 wild type (WT) plants. Since multiple Arabidopsis PIPs are implicated in conducting carbon dioxide across membranes, we focused on identifying whether the examined isoforms affect photosynthesis, either mediated through the control of stomatal conductance to water vapour (gs) or mesophyll conductance of CO2 (gm) or a combination of both. In two separate studies, we grew Arabidopsis plants in a low humidity environment and under high humidity conditions. We found that the contribution of functional PIPs to gs was larger under conditions of low air humidity when the evaporative demand was high, whereas any effect of lacking PIP function was minimal under higher humidity conditions. The pip2;4 knockout mutants had 44% higher gs than the WT under low humidity conditions, which in turn resulted in an increased photosynthetic rate (Anet). AtPIP2;4 is thus likely to be involved in maintaining a positive water balance and high water use efficiency through mediation of transmembrane water flow. The lack of functional AtPIP2;5 on the other hand did not affect gs, but reduced gm indicating a possible role in regulating CO2 membrane permeability. This potential regulatory function was indeed confirmed by subsequent stopped flow measurements of yeast expressing AtPIP2;5.


2021 ◽  
Vol 12 ◽  
Author(s):  
Huizhong Li ◽  
Yichang Cai ◽  
Quanqing Deng ◽  
Han Bao ◽  
Jianwen Chen ◽  
...  

Sugarcane is an important sugar crop. Sugarcane smut, caused by Sporisorium scitamineum, is a worldwide sugarcane disease with serious economic losses and lack of effective control measures. Revealing the molecular pathogenesis of S. scitamineum is very helpful to the development of effective prevention and control technology. Deubiquitinase removes ubiquitin molecules from their binding substrates and participates in a variety of physiological activities in eukaryotes. Based on the transcriptome sequencing data of two isolates (Ss16 and Ss47) of S. scitamineum with different pathogenicities, SsCI33130, a gene encoding an OTU1-deubiquitin enzyme, was identified. The positive knockout mutants and complementary mutants of the SsCI33130 gene were successfully obtained through polyethylene glycol-mediated protoplast transformation technology. In order to study the possible function of this gene in pathogenicity, phenotypic comparison of the growth, morphology, abiotic stress, sexual mating, pathogenicity, and gene expression levels of the knockout mutants, complementary mutants, and their wild type strains were conducted. The results demonstrated that the gene had almost no effect on abiotic stress, cell wall integrity, growth, and morphology, but was related to the sexual mating and pathogenicity of S. scitamineum. The sexual mating ability and pathogenicity between the knockout mutants or between the knockout mutant and wild type were more significantly reduced than between the wild types, the complementary mutants, or the wild types and complementary mutants. The sexual mating between the knockout mutants or between the knockout mutant and wild type could be restored by the exogenous addition of small-molecule signaling substances such as 5 mM cyclic adenosine monophosphate (cAMP) or 0.02 mM tryptophol. In addition, during sexual mating, the expression levels of tryptophol and cAMP synthesis-related genes in the knockout mutant combinations were significantly lower than those in the wild type combinations, while the expression levels in the complementary mutant combinations were restored to the level of the wild type. It is speculated that the SsCI33130 gene may be involved in the development of sexual mating and pathogenicity in S. scitamineum by regulating the synthesis of the small-molecule signaling substances (cAMP or tryptophol) required during the sexual mating of S. scitamineum, thereby providing a molecular basis for the study of the pathogenic mechanisms of S. scitamineum.


Author(s):  
F Tardieu ◽  
I S C Granato ◽  
E J Van Oosterom ◽  
B Parent ◽  
G L Hammer

Abstract Tailoring genotypes for the variety of environmental scenarios associated with climate change requires modelling of the genetic variability of adaptation mechanisms to environmental cues. A large number of physiological mechanisms have been described and modelled, e.g. at transcript, metabolic or hormonal levels, but they remain to be assembled into whole-plant and canopy models. A 'bottom-up' approach combining physiological mechanisms leads to a near-infinite number of combinations and to an unmanageable number of parameters, so more parsimonious approaches are required. We propose that natural selection has constrained the large diversity of mechanisms into consistent strategies, in such a way that not all combinations of mechanisms are possible. These constraints, and resulting feedbacks, result in integrative 'metamechanisms', e.g. response curves of traits to environmental conditions, measurable via high throughput phenotyping, and resulting in robust and stable equations with heritable genotype-dependent parameters. Examples are provided for the responses of developmental traits to temperature, for the response of growth and yield to water deficit and evaporative demand, and for the response of tillering to light and temperature. In these examples, it was inoperative to combine upstream mechanisms into whole-plant mechanisms, whereas the evolutionary constraints on the combinations of physiological mechanisms renders possible the use of genotype-specific response curves at plant or canopy levels. These can be used for a new generation of crop models capable of simulating the behavior of thousands of genotypes. This has significant consequences for plant modelling and its use in genetics and breeding.


1997 ◽  
Vol 17 (11) ◽  
pp. 6303-6310 ◽  
Author(s):  
L Yu ◽  
M A Gorovsky

Although quantitatively minor replication-independent (replacement) histone variants have been found in a wide variety of organisms, their functions remain unknown. Like the H3.3 replacement variants of vertebrates, hv2, an H3 variant in the ciliated protozoan Tetrahymena thermophila, is synthesized and deposited in nuclei of nongrowing cells. Although hv2 is clearly an H3.3-like replacement variant by its expression, sequence analysis indicates that it evolved independently of the H3.3 variants of multicellular eukaryotes. This suggested that it is the constitutive synthesis, not the particular protein sequence, of these variants that is important in the function of H3 replacement variants. Here, we demonstrate that the gene (HHT3) encoding hv2 or either gene (HHT1 or HHT2) encoding the abundant major H3 can be completely knocked out in Tetrahymena. Surprisingly, when cells lacking hv2 are starved, a major histone H3 mRNA transcribed by the HHT2 gene, which is synthesized little, if at all, in wild-type nongrowing cells, is easily detectable. Both HHT2 and HHT3 knockout strains show no obvious defect during vegetative growth. In addition, a mutant with the double knockout of HHT1 and HHT3 is viable while the HHT2 HHT3 double-knockout mutant is not. These results argue strongly that cells require a constitutively expressed H3 gene but that the particular sequence being expressed is not critical.


2021 ◽  
Author(s):  
Qinghua Lu ◽  
Xiangwen Luo ◽  
Xiao Yang ◽  
Tong Zhou ◽  
Yu Zhang ◽  
...  

Abstract Background: Vacuolar ATPases (v-ATPases) are proton pumps for proton translocation across membranes that utilize energy derived from ATP hydrolysis; Previous research revealed Osv-ATPases mediates phytohormes levels and resistance in rice. Osv-ATPase subunit d (Osv-ATPase d) is part of an integral, membrane-embedded V0 complex of V-ATPases complex, whether Osv-ATPase d involves in phytohormes biosynthesis and resistance in rice remains unknown.Finding: The knockout mutant line (line 5) of Osv-ATPase d was generated using the CRISPR/Cas9 system, mutation of Osv-ATPase d did not show any detrimental effect on plant growth or yield productivity. Transcriptomic results showed Osv-ATPase d probably involved in mediating the biosynthesis of plant hormones and resistance in rice. Mutation of Osv-ATPase d significantly increased JA and ABA biosynthesis than wild type. Compared to wild type, mutation of Osv-ATPase d increased the resistance against Southern rice black-streaked dwarf virus (SRBSDV), however, decreased the resistance against Rice stripe virus (RSV) in rice. Conclusion: Taken together, our data reveal the Osv-ATPase d mediates phytohormone biosynthesis and virus resistance in rice, which can be selected as a potential target for resistance breeding in rice.


2021 ◽  
Author(s):  
Victor L Barradas ◽  
Monica Ballinas

<p>This research is a general reflection of the possible transmission not only of COVID-19 but of any influenza disease depending on environmental parameters such as solar radiation, air humidity and air temperature (vapor pressure deficit), evoking the Penman-Monteith model regarding the evaporation of the water that constitutes the small water droplets (aerosols) that carry the virus. In this case the evapotranspiration demand of the atmosphere with which it can be deduced that the spread of the disease will be higher in those places with less evaporative demand, that is, high air humidity and / or low temperatures, and / or low radiation intensities, and vice versa. It can also be deduced that the hours of greatest potential contagion are the night hours, while those with the lowest risk are between 2:00 p.m. and 4:00 p.m. On the other hand, in those rooms with low temperatures the contagion would be more effective. So, considering that the drops produced by a sneeze, by speaking or breathing can go beyond two meters away, it is roughly explained that the use of face masks and keeping a safe minimum distance of two meters can limit transmission of viruses and / or infections. However, this practice is not entirely safe as the environment can play an important role. What is recommended to reduce the spread of these pathogens is to produce high evaporative demands: increasing solar radiation, and increasing air temperature and reducing air humidity, which is practice that can be effective in closed rooms.</p>


Plant Methods ◽  
2018 ◽  
Vol 14 (1) ◽  
Author(s):  
Iván Jauregui ◽  
Shane A. Rothwell ◽  
Samuel H. Taylor ◽  
Martin A. J. Parry ◽  
Elizabete Carmo-Silva ◽  
...  

2008 ◽  
Vol 8 (2) ◽  
pp. 217-229 ◽  
Author(s):  
Vellaisamy Ramamoorthy ◽  
Edgar B. Cahoon ◽  
Mercy Thokala ◽  
Jagdeep Kaur ◽  
Jia Li ◽  
...  

ABSTRACT The C-9-methylated glucosylceramides (GlcCers) are sphingolipids unique to fungi. They play important roles in fungal growth and pathogenesis, and they act as receptors for some antifungal plant defensins. We have identified two genes, FgMT1 and FgMT2, that each encode a putative sphingolipid C-9 methyltransferase (C-9-MT) in the fungal pathogen Fusarium graminearum and complement a Pichia pastoris C-9-MT-null mutant. The ΔFgmt1 mutant produced C-9-methylated GlcCer like the wild-type strain, PH-1, whereas the ΔFgmt2 mutant produced 65 to 75% nonmethylated and 25 to 35% methylated GlcCer. No ΔFgmt1ΔFgmt2 double-knockout mutant producing only nonmethylated GlcCer could be recovered, suggesting that perhaps C-9-MTs are essential in this pathogen. This is in contrast to the nonessential nature of this enzyme in the unicellular fungus P. pastoris. The ΔFgmt2 mutant exhibited severe growth defects and produced abnormal conidia, while the ΔFgmt1 mutant grew like the wild-type strain, PH-1, under the conditions tested. The ΔFgmt2 mutant also exhibited drastically reduced disease symptoms in wheat and much-delayed disease symptoms in Arabidopsis thaliana. Surprisingly, the ΔFgmt2 mutant was less virulent on different host plants tested than the previously characterized ΔFggcs1 mutant, which lacks GlcCer synthase activity and produces no GlcCer at all. Moreover, the ΔFgmt1 and ΔFgmt2 mutants, as well as the P. pastoris strain in which the C-9-MT gene was deleted, retained sensitivity to the antifungal plant defensins MsDef1 and RsAFP2, indicating that the C-9 methyl group is not a critical structural feature of the GlcCer receptor required for the antifungal action of plant defensins.


2013 ◽  
Vol 765-767 ◽  
pp. 2971-2975 ◽  
Author(s):  
Xue Gong ◽  
Ming Li Liu ◽  
Li Jun Zhang ◽  
Wei Liu ◽  
Che Wang

Sucrose transporters (SUCs or SUTs) are considered as the important carriers and responsible for the loading, unloading and distribution of sucrose, but at present there is no report that SUCs are involved in sucrose distribution and metabolism under drought stress at the whole-plant level. AtSUC4, as the unique member of SUT4-clade inArabidopsis thaliana, may be important for plant stress tolerance. Here, by analyzing two homozygous mutation lines ofAtSUC4(Atsuc4-1andAtsuc4-2), we found drought stress induced higher sucrose, lower fructose and glucose contents in shoots, and lower sucrose, higher fructose and glucose contents in roots of these mutants compared with the wild-type (WT), leading to an imbalance of sucrose distribution, fructose and glucose (sucrose metabolites) accumulation changes at the whole-plant level. Thus we believe thatAtSUC4regulates sucrose distribution and metabolism in response to drought stress.


2020 ◽  
Author(s):  
Hyun Kyung Lee ◽  
Daphne R. Goring

SummaryIn flowering plants, continuous cell-cell communication between the compatible male pollen grain/growing pollen tube and the female pistil is required for successful sexual reproduction. In Arabidopsis thaliana, the later stages of this dialogue are mediated by several peptide ligands and receptor kinases that guide pollen tubes to the ovules for the release of sperm cells. Despite a detailed understanding of these processes, a key gap remains on the nature of the regulators that function at the earlier stages. Here, we report on two groups of A. thaliana receptor kinases, the LRR-VIII-2 RK subclass and the SERKs, that function in the female reproductive tract to regulate the compatible pollen grains and early pollen tube growth, both essential steps for the downstream processes leading to fertilization. Multiple A. thaliana LRR-VIII-2 RK and SERK knockout mutant combinations were created, and several phenotypes were observed such as reduced wild-type pollen hydration and reduced pollen tube travel distances. As these mutant pistils displayed a wild-type morphology, the observed altered responses of the wild-type pollen are proposed to result from the loss of these receptor kinases leading to an impaired pollen-pistil dialogue at these early stages. Furthermore, using pollen from related Brassicaceae species, we also discovered that these receptor kinases are required in the female reproductive tract to establish a reproductive barrier to interspecies pollen. Thus, we propose that the LRR-VIII-2 RKs and the SERKs play a dual role in the preferential selection and promotion of intraspecies pollen over interspecies pollen.


Sign in / Sign up

Export Citation Format

Share Document