scholarly journals Molecular markers of putative spermatogonial stem cells in the domestic cat

2016 ◽  
Vol 52 ◽  
pp. 177-186 ◽  
Author(s):  
SJ Bedford-Guaus ◽  
S Kim ◽  
L Mulero ◽  
JM Vaquero ◽  
C Morera ◽  
...  
2012 ◽  
Vol 47 ◽  
pp. 256-260 ◽  
Author(s):  
LM Vansandt ◽  
BS Pukazhenthi ◽  
CL Keefer

2016 ◽  
Vol 28 (2) ◽  
pp. 246
Author(s):  
L. M. Vansandt ◽  
M. Dickson ◽  
R. Zhou ◽  
L. Li ◽  
B. S. Pukazhenthi ◽  
...  

Spermatogonial stem cells (SSC) are unique adult stem cells that reside within the seminiferous tubules of the testis. As stem cells, SSC maintain the ability to self-replicate, providing a potentially unlimited supply of cells and an alternate source for preservation of the male genome. While self-renewing, long-term SSC culture has been achieved in mice, there is virtually no information regarding culture requirements of felid SSC. Therefore, the objectives of this study were to (1) evaluate the ability of 3 feeder cell lines to support germ cell colony establishment in domestic cats (Felis catus), and (2) assess long-term culture using the best feeder(s). Cells isolated enzymatically from peripubertal cat testes (n = 4) and enriched by differential plating were cultured on mouse embryonic fibroblasts (STO line), mouse-derived C166 endothelial cells, and primary cat fetal fibroblasts (cFF). Colony morphology was assessed every other day and immunocytochemistry (ICC) was performed to investigate expression of SSC markers. At 5 days in vitro (DIV), a cluster forming activity assay was used to estimate the number of SSC supported by each feeder cell line. Differences among treatments were compared using Tukey-Kramer adjustment for pair-wise mean comparisons. Data were expressed as mean cluster number ± SE per 105 cells input. When cultured on STO feeders, cat germ cells were distributed as individual cells. On both C166 cells and cFF feeders, germ cell clumps (morphologically consistent with SSC colonies in other species) were observed. Immunocytochemistry revealed that the single germ cells present on STO feeders were positive for UCHL1 and weakly expressed PLZF and OCT4. Cells within the germ cell clumps on C166 cells and cFF co-expressed all 3 SSC markers. The C166 cells supported a higher number of germ cell clusters (77.4 ± 13.8) compared with STO (3.5 ± 1.1, P = 0.0003) or cFF (22.7 ± 1.0, P = 0.0024). Therefore, subsequent subculture experiments were performed exclusively with C166 feeder layers. Cultures from 2 donors were passaged at 12 DIV and periodically as needed thereafter. Germ cell clumps consistently reestablished following each subculture and immunocytochemistry analysis confirmed maintenance of all 3 SSC markers. Cells were also positive for alkaline phosphatase activity. Cells that had been cryopreserved in culture medium with 5% (vol/vol) dimethyl sulphoxide after144 DIV (7 passages) were thawed and cultured for an additional 18 days. These cells continued to express SSC markers and form germ cell clusters. Taken together, these data demonstrate that C166 feeder cells can facilitate colony establishment and in vitro propagation of germ cell clumps in the domestic cat. This represents an important first step towards attainment and optimization of a long-term SSC culture system in the cat. This system would provide a mechanism to explore regulation of spermatogenesis, test species-specific drugs, and produce transgenic biomedical models.


2016 ◽  
Vol 95 (1) ◽  
pp. 20-20 ◽  
Author(s):  
R. H. Powell ◽  
J. Galiguis ◽  
M. N. Biancardi ◽  
C. E. Pope ◽  
S. P. Leibo ◽  
...  

2014 ◽  
Vol 19 (3) ◽  
pp. 521-534 ◽  
Author(s):  
Quan Zhou ◽  
Yueshuai Guo ◽  
Bo Zheng ◽  
Binbin Shao ◽  
Min Jiang ◽  
...  

2015 ◽  
Vol 27 (1) ◽  
pp. 140
Author(s):  
N. Tiptanavattana ◽  
A. Radtanakatikanon ◽  
S. Buranapraditkun ◽  
P. Hyttel ◽  
H. M. Holmes ◽  
...  

The pubertal age of domestic cat (Felis catus) as defined as a complete spermatogenesis has been reported to occur around 8 months of age. During the initial phase of testicular development, the transition of gonocytes to spermatogonial stem cells (SSC) takes place within the seminiferous cords. This stage-specific transition has been demonstrated to facilitate SSC isolation and enrichment. Because information for this aspect in domestic cats is limited, this study aimed to identify the phase transition of gonocytes to SSC during newborn to puberty. Cat testes were collected and classified by age into 3 groups: group 1: 0–4 months (n = 5), group 2: 4–6 months (n = 5), and group 3: 6–12 months (n = 5). Testes were studied for conventional histology, transmission electron microscopy (TEM), and FACS analysis on GFRα-1 expression, a SSC marker. For histology, tissues were fixed, sectioned, and stained with H&E. Serial changes of germ cell development within the testes were observed using light microscopy. In addition, ultrathin sections (60 nm thickness) of testes were cut and examined with TEM for ultrastructure analysis. Immunolabelling and flow cytometry of GFRα-1 were used to identify the SSC population after testicular cell dissociation. The percentages of spermatogonia per tubule were analysed by one-way ANOVA, and data are presented as mean ± s.e. The development of testicular germ cells from gonocyte to spermatozoon was gradually demonstrated in histological sections, depending on age of the cats. For group 1, the gonocytes were clearly presented in the seminiferous cord. These gonocytes were in proliferative phase, as they frequently contained homogeneous euchromatin and less organelles. In group 2, the gonocytes transformed to spermatogonia as indicated by their small size (range 8.11–13.55 μm) with oval to flattened shape, chromatin condensation, and darkened cytoplasm. These cells migrated and settled onto the basement membrane of seminiferous cord. At this stage, mitochondria and small clumps of heterochromatin increased when compared with group 1. Some spermatogonia occasionally developed through the meiosis by 6 months of age (group 2), whereas complete spermatogenesis was first identified in 9-month testes (group 3). The percentage of spermatogonium/tubule in group 2 (15.84 ± 0.67) was significantly higher (P < 0.001) than group 1 and 3 (1.99 ± 0.22 and 6.88 ± 0.53, respectively). Because the SSC-like cells (based on their histological morphology) were predominantly found in group 2, the testes (n = 5, 4–6 months of age) were additionally digested to confirm GFRα-1 expression. Of total testicular cells, a high proportion of GFRα-1 positive cells (12.32 ± 6.31%) were identified by FACS. In conclusion, this study provides information regarding the age-dependent development of testicular germ cells in domestic cats. The findings provide the transition period of gonocytes to SSC that occurs around 4 to 6 months of age. This study can be applied for the enrichment of feline SSC upon testicular digestion.


Sign in / Sign up

Export Citation Format

Share Document