nile tilapia oreochromis niloticus
Recently Published Documents


TOTAL DOCUMENTS

3122
(FIVE YEARS 1101)

H-INDEX

70
(FIVE YEARS 16)

2022 ◽  
Vol 143 ◽  
pp. 7-16
Author(s):  
Xin Zhou ◽  
Fengying Gao ◽  
Maixin Lu ◽  
Zhigang Liu ◽  
Miao Wang ◽  
...  

2022 ◽  
Vol 10 (1) ◽  
pp. 100
Author(s):  
Po-Tsang Lee ◽  
Yu-Sheng Wu ◽  
Chung-Chih Tseng ◽  
Jia-Yu Lu ◽  
Meng-Chou Lee

This study evaluated the effects of the feeding of spent mushroom substrate from Agaricus blazei on Nile tilapia (Oreochromis niloticus). The safety of 0–1000 μg/mL A. blazei spent substrate water extract (ABSSE) was demonstrated in the primary hepatic and splenic macrophages and the THK cell line (a cell line with characteristics of melanomacrophages) using a cytotoxicity assay. Here, 10 μg/mL of crude ABSSE promoted the phagocytic activity of macrophages and THK cells. Stimulating ABSSE-primed THK cells with lipopolysaccharides or peptidoglycan resulted in higher expression levels of four cytokine genes (e.g., interleukinz (IL)-1β, IL-12b, IL-8 and tumor necrosis factor α (TNFα)) and one cytokine gene (TNFα), respectively. An in vitro bacterial growth inhibition assay demonstrated that ABSSE could inhibit the growth of Streptococcus agalactiae. In the first feeding trial, Nile tilapia were fed with experimental feed containing 0, 1, or 5% of A. blazei spent substrate (ABSS) for seven and fourteen days followed by bacterial challenge assay. The best result was obtained when Nile tilapia were continuously fed for seven days on a diet containing 1% ABSS, with the survival rate being higher than in groups with 0% and 5% ABSS after challenge with S. agalactiae. In the second trial, fish were fed diets supplemented with 0% or 1% ABSS for seven days, and then all the groups were given the control feed for several days prior to bacterial challenge in order to investigate the duration of the protective effect provided by ABSS. The results showed that the protective effects were sustained at day 7 after the feed was switched. Overall, spent mushroom substrate from A. blazei is a cost-effective feed additive for Nile tilapia that protects fish from S. agalactiae infection.


2022 ◽  
Vol 6 (1) ◽  
pp. 4-7
Author(s):  
Nassrin Mashaii ◽  
Farhad Rajabipour ◽  
Ahmad Bitaraf ◽  
Homayun Hosseinzadeh ◽  
Mostafa Sharif Rohani ◽  
...  

Author(s):  
Thao Thu Mai ◽  
Pattanapon Kayansamruaj ◽  
Chayanit Soontara ◽  
Pattarawit Kerddee ◽  
Dinh-Hung Nguyen ◽  
...  

Tilapia lake virus (TiLV), a major pathogen of farmed tilapia, is known to be vertically transmitted. Here, we hypothesize that Nile tilapia (Oreochromis niloticus) broodstock immunized with a TiLV inactivated vaccine can mount a protective antibody response and passively transfer maternal antibodies to their fertilized eggs and larvae. To test this hypothesis, three groups of tilapia broodstock, each containing 4 males and 8 females, were immunized with either a heat-killed TiLV vaccine (HKV), a formalin-killed TiLV vaccine (FKV) (both administered at 3.6 ×106 TCID50 per fish), or with L15 medium. Booster vaccination with the same vaccines was given 3-weeks later, and mating took place 1 week thereafter. Broodstock blood sera, fertilized eggs and larvae were collected from 6-14 weeks post-primary vaccination for measurement of TiLV-specific antibody (anti-TiLV IgM) levels. In parallel, passive immunization using sera from the immunized female broodstock was administered to naïve tilapia juveniles to assess if antibodies induced in immunized broodstock were protective. The results showed that anti-TiLV IgM was produced in the majority of both male and female broodstock vaccinated with either the HKV or FKV and that and that these antibodies could be detected in the fertilized eggs and larvae from vaccinated broodstock. Higher levels of maternal antibody were observed in fertilized eggs from broodstock vaccinated with HKV than those vaccinated with FKV. Low levels of TiLV-IgM were detected in some of the 1-3-day old larvae but were undetectable in 7-14-day old larvae from the vaccinated broodstock, indicating a short persistence of TiLV-IgM in larvae. Moreover, passive immunization proved that antibodies elicited by TiLV vaccination were able to confer 85% to 90% protection against TiLV challenge in naïve juvenile tilapia. In conclusion, immunization of tilapia broodstock with TiLV vaccines could be a potential strategy for the prevention of TiLV in tilapia fertilized eggs and larvae, with HKV appearing to be more promising than FKV for maternal vaccination.


Sign in / Sign up

Export Citation Format

Share Document