Woodchip and biochar amendments differentially influence microbial responses, but do not enhance plant recovery in disturbed semiarid soils

2020 ◽  
Vol 28 (S4) ◽  
Author(s):  
Noelle J. Espinosa ◽  
David J. P. Moore ◽  
Craig Rasmussen ◽  
Jeffrey S. Fehmi ◽  
Rachel E. Gallery
Author(s):  
Arthur Prudêncio de Araujo Pereira ◽  
Lara Andrade Lucena Lima ◽  
Walderly Melgaço Bezerra ◽  
Mirella Leite Pereira ◽  
Leonardo Ribeiro Oliveira Normando ◽  
...  

2021 ◽  
Author(s):  
Christoph Rosinger ◽  
Michael Bonkowski

AbstractFreeze–thaw (FT) events exert a great physiological stress on the soil microbial community and thus significantly impact soil biogeochemical processes. Studies often show ambiguous and contradicting results, because a multitude of environmental factors affect biogeochemical responses to FT. Thus, a better understanding of the factors driving and regulating microbial responses to FT events is required. Soil chronosequences allow more focused comparisons among soils with initially similar start conditions. We therefore exposed four soils with contrasting organic carbon contents and opposing soil age (i.e., years after restoration) from a postmining agricultural chronosequence to three consecutive FT events and evaluated soil biochgeoemical responses after thawing. The major microbial biomass carbon losses occurred after the first FT event, while microbial biomass N decreased more steadily with subsequent FT cycles. This led to an immediate and lasting decoupling of microbial biomass carbon:nitrogen stoichiometry. After the first FT event, basal respiration and the metabolic quotient (i.e., respiration per microbial biomass unit) were above pre-freezing values and thereafter decreased with subsequent FT cycles, demonstrating initially high dissimilatory carbon losses and less and less microbial metabolic activity with each iterative FT cycle. As a consequence, dissolved organic carbon and total dissolved nitrogen increased in soil solution after the first FT event, while a substantial part of the liberated nitrogen was likely lost through gaseous emissions. Overall, high-carbon soils were more vulnerable to microbial biomass losses than low-carbon soils. Surprisingly, soil age explained more variation in soil chemical and microbial responses than soil organic carbon content. Further studies are needed to dissect the factors associated with soil age and its influence on soil biochemical responses to FT events.


2015 ◽  
Vol 6 ◽  
Author(s):  
Jürg B. Logue ◽  
Stuart E. G. Findlay ◽  
Jérôme Comte

2017 ◽  
Vol 26 (1) ◽  
pp. 48-55 ◽  
Author(s):  
Caren E. Jones ◽  
Sascha Bachmann ◽  
Victor J. Lieffers ◽  
Simon M. Landhäusser

Author(s):  
Wenxing Li ◽  
Peihua Zhang ◽  
Hao Qiu ◽  
Cornelis A. M. Van Gestel ◽  
Willie J. G. M. Peijnenburg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document