The Bernoulli Integral for a Certain Class of Non-Stationary Viscous Vortical Flows of Incompressible Fluid

2015 ◽  
Vol 135 (3) ◽  
pp. 295-309 ◽  
Author(s):  
Y.A. Stepanyants ◽  
E.I. Yakubovich
1997 ◽  
Vol 08 (04) ◽  
pp. 793-803 ◽  
Author(s):  
Yu Chen ◽  
Hirotada Ohashi

The lattice-Bhatnagar-Gross-Krook (BGK) method has been used to simulate fluid flow in the nearly incompressible limit. But for the completely incompressible flows, two special approaches should be applied to the general model, for the steady and unsteady cases, respectively. Introduced by Zou et al.,1 the method for steady incompressible flows will be described briefly in this paper. For the unsteady case, we will show, using a simple numerical example, the need to solve a Poisson equation for pressure.


1990 ◽  
Vol 44 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Hiromitsu Hamabata

Exact wave solutions of the nonlinear jnagnetohydrodynamic equations for a highly conducting incompressible fluid are obtained for the cases where the physical quantities are independent of one Cartesian co-ordina.te and for where they vary three-dimensionally but both the streamlines and magnetic field lines lie in parallel planes. It is shown that there is a class of exact wave solutions with large amplitude propagating in a straight but non-uniform magnetic field with constant or non-uniform velocity.


Sign in / Sign up

Export Citation Format

Share Document