general model
Recently Published Documents


TOTAL DOCUMENTS

2515
(FIVE YEARS 347)

H-INDEX

113
(FIVE YEARS 10)

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Pablo Rivas-Robledo

Abstract In this article I present HYPER-REF, a model to determine the referent of any given expression in First-Order Logic (FOL). I also explain how this model can be used to determine the referent of a first-order theory such as First-Order Arithmetic (FOA). By reference or referent I mean the non-empty set of objects that the syntactical terms of a well-formed formula (wff) pick out given a particular interpretation of the language. To do so, I will first draw on previous work to make explicit the notion of reference and its hyperintensional features. Then I present HYPER-REF and offer a heuristic method for determining the reference of any formula. Then I discuss some of the benefits and most salient features of HYPER-REF, including some remarks on the nature of self-reference in formal languages.


2022 ◽  
Author(s):  
Madison Kearns ◽  
Colleen Morleey ◽  
Kostas Parkatzidis ◽  
Richard Whitfield ◽  
Alvaro Sponza ◽  
...  

Polymer molecular weight, or chain length distributions, are a core characteristic of a polymer system, with the distribution being intimately tied to the properties and performance of the polymer material....


Author(s):  
QUAN HU ◽  
PING CAI

A method for estimating ground reaction force (GRF) with plantar pressure was proposed in this paper. The estimation model was constructed to approximate the nonlinear relationships between GRF and the plantar pressure according to the linear combinations of Gaussian kernel functions. Partial least squares regression (PLSR) was adopted to obtain model parameters and eliminate multicollinearity among the pressure components. The general model and subject-specific models were constructed for 12 male and 4 female subjects. Moreover, a data expansion method was introduced for the establishment of subject-specific model, which is implemented by searching and adopting the data with consistent statistical characteristics in a pre-established database. That approach is particularly meaningful for the group whose walking ability is limited or clinic where the force platform is not available. The NRMSEs (%) for general model were 5.27–7.85% (GRF_V), 7.35–8.53% (GRF_ML), and 8.82–10.54% (GRF_AP). The maximum NRMSEs (%) for subject-specific models were 5.02% (GRF_V), 9.91% (GRF_ML), and 10.23% (GRF_AP). Results showed that both general and subject-specific models achieved higher accuracy than existing methods such as linear regression and neural network methods.


2021 ◽  
Author(s):  
Sergio Marconi ◽  
Ben G Weinstein ◽  
Sheng Zou ◽  
Stephanie Ann Bohlman ◽  
Alina Zare ◽  
...  

Advances in remote sensing imagery and computer vision applications unlock the potential for developing algorithms to classify individual trees from remote sensing at unprecedented scales. However, most approaches to date focus on site-specific applications and a small number of taxonomic groups. This limitation makes it hard to evaluate whether these approaches generalize well across broader geographic areas and ecosystems. Leveraging field surveys and hyperspectral remote sensing data from the National Ecological Observatory Network (NEON), we developed a continental extent model for tree species classification that can be applied to the entire network including a wide range of US terrestrial ecosystems. We compared the performance of the generalized approach to models trained at each individual site, evaluating advantages and challenges posed by training species classifiers at the US scale. We evaluated the effect of geography, environmental, and ecological conditions on the accuracy and precision of species predictions. On average, the general model resulted in good overall classification accuracy (micro-F1 score), with better accuracy than site-specific classifiers (average individual tree level accuracy of 0.77 for the general model and 0.72 for site-specific models). Aggregating species to the genus-level increased accuracy to 0.83. Regions with more species exhibited lower classification accuracy. Trees were more likely to be confused with congeneric and co-occurring species and confusion was highest for trees with structural damage and in complex closed-canopy forests. The model produced accurate estimates of uncertainty, correctly identifying trees where confusion was likely. Using only data from NEON this single integrated classifier can make predictions for 20% of all tree species found in forest ecosystems across the US, suggesting the potential for broad scale general models for species classification from hyperspectral imaging.


2021 ◽  
Vol 5 (12) ◽  
Author(s):  
Fernando D. León-Cázares ◽  
Enrique I. Galindo-Nava

2021 ◽  
Vol 13 (24) ◽  
pp. 13581
Author(s):  
María Pilar González-Hernández ◽  
Juan Gabriel Álvarez-González

Wooded pastures serve as a traditional source of forage in Europe, where forest grazing is valued as an efficient tool for maintaining the diversity of semi-natural habitats. In a forest grazing setting with diverse diet composition, assessing the energy content of animal diets can be a difficult task because of its dependency on digestibility measures. In the present study, prediction equations of metabolizable energy (ME) were obtained performing stepwise regression with data (n = 297; 44 plant species) on nutritional attributes (Acid Detergent Fiber, lignin, silica, dry matter, crude protein, in vitro organic matter digestibility) from 20 representative stands of Atlantic dry heathlands and pedunculate oak woodlands. The results showed that the prediction accuracy of ME is reduced when the general model (R2 = 0.64) is applied, as opposed to the use of the specific prediction equations for each vegetation type (R2 = 0.61, 0.66, 0.71 for oak woodlands; R2 = 0.70 heather-gorse dominated heathlands, R2 = 0.41 continental heathlands). The general model tends to overestimate the ME concentrations in heaths with respect to the observed ME values obtained from IVOMD as a sole predictor, and this divergence could be corrected by applying the specific prediction equations obtained for each vegetation type. Although the use of prediction equations by season would improve accuracy in the case of a Winter scenario, using the general model as opposed to the prediction equations for Spring, Summer or Fall would represent a much smaller loss of accuracy.


2021 ◽  
pp. 107907
Author(s):  
Shuyin Xia ◽  
Longhai Huang ◽  
Guoyin Wang ◽  
Xinbo Gao ◽  
Yabin Shao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document