Spatial regulation of RBOHD via AtECA4‐mediated recycling and clathrin‐mediated endocytosis contributes to ROS accumulation upon salt stress response but not flg22‐induced immune response

2021 ◽  
Author(s):  
Jihyeong Lee ◽  
Hong Hanh Nguyen ◽  
Youngmin Park ◽  
Jinxing Lin ◽  
Inhwan Hwang
2021 ◽  
Vol 12 ◽  
Author(s):  
Jingjing Mao ◽  
Jiaping Yuan ◽  
Zhijie Mo ◽  
Lulu An ◽  
Sujuan Shi ◽  
...  

Many tobacco (Nicotiana tabacum) cultivars are salt-tolerant and thus are potential model plants to study the mechanisms of salt stress tolerance. The CALCINEURIN B-LIKE PROTEIN (CBL) is a vital family of plant calcium sensor proteins that can transmit Ca2+ signals triggered by environmental stimuli including salt stress. Therefore, assessing the potential of NtCBL for genetic improvement of salt stress is valuable. In our studies on NtCBL members, constitutive overexpression of NtCBL5A was found to cause salt supersensitivity with necrotic lesions on leaves. NtCBL5A-overexpressing (OE) leaves tended to curl and accumulated high levels of reactive oxygen species (ROS) under salt stress. The supersensitivity of NtCBL5A-OE leaves was specifically induced by Na+, but not by Cl−, osmotic stress, or drought stress. Ion content measurements indicated that NtCBL5A-OE leaves showed sensitivity to the Na+ accumulation levels that wild-type leaves could tolerate. Furthermore, transcriptome profiling showed that many immune response-related genes are significantly upregulated and photosynthetic machinery-related genes are significantly downregulated in salt-stressed NtCBL5A-OE leaves. In addition, the expression of several cation homeostasis-related genes was also affected in salt-stressed NtCBL5A-OE leaves. In conclusion, the constitutive overexpression of NtCBL5A interferes with the normal salt stress response of tobacco plants and leads to Na+-dependent leaf necrosis by enhancing the sensitivity of transgenic leaves to Na+. This Na+ sensitivity of NtCBL5A-OE leaves might result from the abnormal Na+ compartmentalization, plant photosynthesis, and plant immune response triggered by the constitutive overexpression of NtCBL5A. Identifying genes and pathways involved in this unusual salt stress response can provide new insights into the salt stress response of tobacco plants.


2021 ◽  
Vol 329 ◽  
pp. 180-191
Author(s):  
Ulkar İbrahimova ◽  
Pragati Kumari ◽  
Saurabh Yadav ◽  
Anshu Rastogi ◽  
Michal Antala ◽  
...  

BMC Genomics ◽  
2012 ◽  
Vol 13 (1) ◽  
pp. 215 ◽  
Author(s):  
Guido Mastrobuoni ◽  
Susann Irgang ◽  
Matthias Pietzke ◽  
Heike E Aßmus ◽  
Markus Wenzel ◽  
...  

2007 ◽  
Vol 27 (22) ◽  
pp. 7771-7780 ◽  
Author(s):  
Paul E. Verslues ◽  
Giorgia Batelli ◽  
Stefania Grillo ◽  
Fernanda Agius ◽  
Yong-Sig Kim ◽  
...  

ABSTRACT SOS2, a class 3 sucrose-nonfermenting 1-related kinase, has emerged as an important mediator of salt stress response and stress signaling through its interactions with proteins involved in membrane transport and in regulation of stress responses. We have identified additional SOS2-interacting proteins that suggest a connection between SOS2 and reactive oxygen signaling. SOS2 was found to interact with the H2O2 signaling protein nucleoside diphosphate kinase 2 (NDPK2) and to inhibit its autophosphorylation activity. A sos2-2 ndpk2 double mutant was more salt sensitive than a sos2-2 single mutant, suggesting that NDPK2 and H2O2 are involved in salt resistance. However, the double mutant did not hyperaccumulate H2O2 in response to salt stress, suggesting that it is altered signaling rather than H2O2 toxicity alone that is responsible for the increased salt sensitivity of the sos2-2 ndpk2 double mutant. SOS2 was also found to interact with catalase 2 (CAT2) and CAT3, further connecting SOS2 to H2O2 metabolism and signaling. The interaction of SOS2 with both NDPK2 and CATs reveals a point of cross talk between salt stress response and other signaling factors including H2O2.


2021 ◽  
Author(s):  
Ashok Saddhe Ankush ◽  
Ajay Kumar Mishra ◽  
Kumar Kundan

2018 ◽  
Vol 132 (2) ◽  
pp. 323-346 ◽  
Author(s):  
Benedict C. Oyiga ◽  
Francis C. Ogbonnaya ◽  
Ram C. Sharma ◽  
Michael Baum ◽  
Jens Léon ◽  
...  

2017 ◽  
Vol 94 (4-5) ◽  
pp. 531-548 ◽  
Author(s):  
Hung-Chi Chen ◽  
Vicki Hsieh-Feng ◽  
Pei-Chun Liao ◽  
Wan-Hsing Cheng ◽  
Li-Yu Liu ◽  
...  

PROTEOMICS ◽  
2006 ◽  
Vol 6 (9) ◽  
pp. 2733-2745 ◽  
Author(s):  
Sabine Fulda ◽  
Stefan Mikkat ◽  
Fang Huang ◽  
Jana Huckauf ◽  
Kay Marin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document