Proteome analysis of salt stress response in the cyanobacteriumSynechocystis sp. strain PCC 6803

PROTEOMICS ◽  
2006 ◽  
Vol 6 (9) ◽  
pp. 2733-2745 ◽  
Author(s):  
Sabine Fulda ◽  
Stefan Mikkat ◽  
Fang Huang ◽  
Jana Huckauf ◽  
Kay Marin ◽  
...  
2021 ◽  
Vol 329 ◽  
pp. 180-191
Author(s):  
Ulkar İbrahimova ◽  
Pragati Kumari ◽  
Saurabh Yadav ◽  
Anshu Rastogi ◽  
Michal Antala ◽  
...  

BMC Genomics ◽  
2012 ◽  
Vol 13 (1) ◽  
pp. 215 ◽  
Author(s):  
Guido Mastrobuoni ◽  
Susann Irgang ◽  
Matthias Pietzke ◽  
Heike E Aßmus ◽  
Markus Wenzel ◽  
...  

2007 ◽  
Vol 27 (22) ◽  
pp. 7771-7780 ◽  
Author(s):  
Paul E. Verslues ◽  
Giorgia Batelli ◽  
Stefania Grillo ◽  
Fernanda Agius ◽  
Yong-Sig Kim ◽  
...  

ABSTRACT SOS2, a class 3 sucrose-nonfermenting 1-related kinase, has emerged as an important mediator of salt stress response and stress signaling through its interactions with proteins involved in membrane transport and in regulation of stress responses. We have identified additional SOS2-interacting proteins that suggest a connection between SOS2 and reactive oxygen signaling. SOS2 was found to interact with the H2O2 signaling protein nucleoside diphosphate kinase 2 (NDPK2) and to inhibit its autophosphorylation activity. A sos2-2 ndpk2 double mutant was more salt sensitive than a sos2-2 single mutant, suggesting that NDPK2 and H2O2 are involved in salt resistance. However, the double mutant did not hyperaccumulate H2O2 in response to salt stress, suggesting that it is altered signaling rather than H2O2 toxicity alone that is responsible for the increased salt sensitivity of the sos2-2 ndpk2 double mutant. SOS2 was also found to interact with catalase 2 (CAT2) and CAT3, further connecting SOS2 to H2O2 metabolism and signaling. The interaction of SOS2 with both NDPK2 and CATs reveals a point of cross talk between salt stress response and other signaling factors including H2O2.


2021 ◽  
Author(s):  
Ashok Saddhe Ankush ◽  
Ajay Kumar Mishra ◽  
Kumar Kundan

2018 ◽  
Vol 132 (2) ◽  
pp. 323-346 ◽  
Author(s):  
Benedict C. Oyiga ◽  
Francis C. Ogbonnaya ◽  
Ram C. Sharma ◽  
Michael Baum ◽  
Jens Léon ◽  
...  

2017 ◽  
Vol 94 (4-5) ◽  
pp. 531-548 ◽  
Author(s):  
Hung-Chi Chen ◽  
Vicki Hsieh-Feng ◽  
Pei-Chun Liao ◽  
Wan-Hsing Cheng ◽  
Li-Yu Liu ◽  
...  

2020 ◽  
Author(s):  
Jingjing Wang ◽  
Cong An ◽  
Hailin Guo ◽  
Xiangyang Yang ◽  
Jingbo Chen ◽  
...  

Abstract Background: Areas with saline soils are sparsely populated and have fragile ecosystems, which severely restricts the sustainable development of local economies. Zoysia grasses are recognized as excellent warm-season turfgrasses worldwide, with high salt tolerance and superior growth in saline-alkali soils. However, the mechanism underlying the salt tolerance of Zoysia species remains unknown. Results: The phenotypic and physiological responses of two contrasting materials, Zoysia japonica Steud. Z004 (salt sensitive) and Z011 (salt tolerant) in response to salt stress were studied. The results show that Z011 was more salt tolerant than was Z004, with the former presenting greater K+/Na+ ratios in both its leaves and roots. To study the molecular mechanisms underlying salt tolerance further, we compared the transcriptomes of the two materials at different time points (0 h, 1 h, 24 h, and 72 h) and from different tissues (leaves and roots) under salt treatment. The 24-h time point and the roots might make significant contributions to the salt tolerance. Moreover, GO and KEGG analyses of different comparisons revealed that the key DEGs participating in the salt-stress response belonged to the hormone pathway, various TF families and the DUF family. Conclusions: Z011 may have improved salt tolerance by reducing Na+ transport from the roots to the leaves, increasing K+ absorption in the roots and reducing K+ secretion from the leaves to maintain a significantly greater K+/Na+ ratio. Twenty-four hours might be a relatively important time point for the salt-stress response of zoysiagrass. The auxin signal transduction family, ABA signal transduction family, WRKY TF family and bHLH TF family may be the most important families in Zoysia salt-stress regulation. This study provides fundamental information concerning the salt-stress response of Zoysia and improves the understanding of molecular mechanisms in salt-tolerant plants.


Sign in / Sign up

Export Citation Format

Share Document