scholarly journals Release from Endoplasmic Reticulum Matrix Proteins Controls Cell Surface Transport of MHC Class I Molecules

Traffic ◽  
2015 ◽  
Vol 16 (6) ◽  
pp. 591-603 ◽  
Author(s):  
Susanne Fritzsche ◽  
Esam T. Abualrous ◽  
Britta Borchert ◽  
Frank Momburg ◽  
Sebastian Springer
2001 ◽  
Vol 75 (12) ◽  
pp. 5663-5671 ◽  
Author(s):  
Frank Momburg ◽  
Arno Müllbacher ◽  
Mario Lobigs

ABSTRACT In contrast to many other viruses that escape the cellular immune response by downregulating major histocompatibility complex (MHC) class I molecules, flavivirus infection can upregulate their cell surface expression. Previously we have presented evidence that during flavivirus infection, peptide supply to the endoplasmic reticulum is increased (A. Müllbacher and M. Lobigs, Immunity 3:207–214, 1995). Here we show that during the early phase of infection with different flaviviruses, the transport activity of the peptide transporter associated with antigen processing (TAP) is augmented by up to 50%. TAP expression is unaltered during infection, and viral but not host macromolecular synthesis is required for enhanced peptide transport. This study is the first demonstration of transient enhancement of TAP-dependent peptide import into the lumen of the endoplasmic reticulum as a consequence of a viral infection. We suggest that the increased supply of peptides for assembly with MHC class I molecules in flavivirus-infected cells accounts for the upregulation of MHC class I cell surface expression with the biological consequence of viral evasion of natural killer cell recognition.


2020 ◽  
Author(s):  
Xizheng Sun ◽  
Reika Tokunaga ◽  
Yoko Nagai ◽  
Ryo Miyahara ◽  
Akihiro Kishimura ◽  
...  

<p><a></a><a></a><a>We have validated that ligand peptides designed from antigen peptides could be used for targeting specific major histocompatibility complex class I (MHC-I)</a> molecules on cell surface. To design the ligand peptides, we used reported antigen peptides for each MHC-I molecule with high binding affinity. From the crystal structure of the peptide/MHC-I complexes, we determined a modifiable residue in the antigen peptides and replaced this residue with a lysine with an ε-amine group modified with functional molecules. The designed ligand peptides successfully bound to cells expressing the corresponding MHC-I molecules via exchange of peptides bound to the MHC-I. We demonstrated that the peptide ligands could be used to transport a protein or a liposome to cells expressing the corresponding MHC-I. The present strategy may be useful for targeted delivery to cells overexpressing MHC-I, which have been observed autoimmune diseases.</p>


2018 ◽  
Vol 9 ◽  
Author(s):  
Denise S. M. Boulanger ◽  
Ruth C. Eccleston ◽  
Andrew Phillips ◽  
Peter V. Coveney ◽  
Tim Elliott ◽  
...  

2003 ◽  
Vol 77 (21) ◽  
pp. 11644-11650 ◽  
Author(s):  
Keith D. Tardif ◽  
Aleem Siddiqui

ABSTRACT The hepatitis C virus (HCV) causes chronic hepatitis in most infected individuals by evading host immune defenses. In this investigation, we show that HCV-infected cells may go undetected in the immune system by suppressing major histocompatibility complex (MHC) class I antigen presentation to cytotoxic T lymphocytes. Cells expressing HCV subgenomic replicons have lower MHC class I cell surface expression. This is due to reduced levels of properly folded MHC class I molecules. HCV replicons induce endoplasmic reticulum (ER) stress (K. Tardif, K. Mori, and A. Siddiqui, J. Virol. 76:7453-7459, 2002), which results from a decline in protein glycosylation. Decreasing protein glycosylation can disrupt protein folding, preventing the assembly of MHC class I molecules. This results in the accumulation of unfolded MHC class I. Therefore, the persistence and pathogenesis of HCV may depend upon the ER stress-mediated interference of MHC class I assembly and cell surface expression.


1993 ◽  
Vol 177 (2) ◽  
pp. 265-272 ◽  
Author(s):  
N P Restifo ◽  
F Esquivel ◽  
Y Kawakami ◽  
J W Yewdell ◽  
J J Mulé ◽  
...  

Intracellular antigens must be processed before presentation to CD8+ T cells by major histocompatibility complex (MHC) class I molecules. Using a recombinant vaccinia virus (Vac) to transiently express the Kd molecule, we studied the antigen processing efficiency of 26 different human tumor lines. Three cell lines, all human small cell lung carcinoma, consistently failed to process endogenously synthesized proteins for presentation to Kd-restricted, Vac-specific T cells. Pulse-chase experiments showed that MHC class I molecules were not transported by these cell lines from the endoplasmic reticulum to the cell surface. This finding suggested that peptides were not available for binding to nascent MHC molecules in the endoplasmic reticulum. Northern blot analysis of these cells revealed low to nondetectable levels of mRNAs for MHC-encoded proteasome components LMP-7 and LMP-2, as well as the putative peptide transporters TAP-1 and TAP-2. Treatment of cells with interferon gamma enhanced expression of these mRNAs and reversed the observed functional and biochemical deficits. Our findings suggest that downregulation of antigen processing may be one of the strategies used by tumors to escape immune surveillance. Potential therapeutic applications of these findings include enhancing antigen processing at the level of the transcription of MHC-encoded proteasome and transporter genes.


Sign in / Sign up

Export Citation Format

Share Document