flavivirus infection
Recently Published Documents


TOTAL DOCUMENTS

153
(FIVE YEARS 62)

H-INDEX

27
(FIVE YEARS 6)

Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 44
Author(s):  
Abdul Wahaab ◽  
Bahar E. Mustafa ◽  
Muddassar Hameed ◽  
Nigel J. Stevenson ◽  
Muhammad Naveed Anwar ◽  
...  

Flaviviruses are known to cause a variety of diseases in humans in different parts of the world. There are very limited numbers of antivirals to combat flavivirus infection, and therefore new drug targets must be explored. The flavivirus NS2B-NS3 proteases are responsible for the cleavage of the flavivirus polyprotein, which is necessary for productive viral infection and for causing clinical infections; therefore, they are a promising drug target for devising novel drugs against different flaviviruses. This review highlights the structural details of the NS2B-NS3 proteases of different flaviviruses, and also describes potential antiviral drugs that can interfere with the viral protease activity, as determined by various studies. Moreover, optimized in vitro reaction conditions for studying the NS2B-NS3 proteases of different flaviviruses may vary and have been incorporated in this review. The increasing availability of the in silico and crystallographic/structural details of flavivirus NS2B-NS3 proteases in free and drug-bound states can pave the path for the development of promising antiflavivirus drugs to be used in clinics. However, there is a paucity of information available on using animal cells and models for studying flavivirus NS2B-NS3 proteases, as well as on the testing of the antiviral drug efficacy against NS2B-NS3 proteases. Therefore, on the basis of recent studies, an effort has also been made to propose potential cellular and animal models for the study of flavivirus NS2B-NS3 proteases for the purposes of exploring flavivirus pathogenesis and for testing the efficacy of possible drugs targets, in vitro and in vivo.


2021 ◽  
Author(s):  
Pham-Tue-Hung Tran ◽  
Abhilash I. Chiramel ◽  
Magnus Johansson ◽  
Wessam Melik

Flaviviruses are usually transmitted to humans via mosquito or tick bites. During infection, virus replication and assembly, whose cellular sites are relatively close, are controlled by virus proteins and a diverse range of host proteins. By siRNA-mediated gene silencing, we show that ALIX and CHMP4A, two members of the host endosomal sorting complex required for transport (ESCRT) protein machinery, are required for flavivirus infection. Using cell lines expressing subgenomic replicons and replicon virus-like particles, we demonstrate specific roles for ALIX and CHMP4A in viral replication and assembly, respectively. Employing biochemical methodology, we show that the ESCRT proteins are recruited by a putative specific late (L) domain motif LYXLA within the NS3 protein of tick-borne flaviviruses. Furthermore, to counteract the recruitment of ESCRT proteins, the host cells may elicit defense mechanisms. We found that ectopic expression of the interferon-stimulated gene 15 (ISG15) or the E3 ISG15-protein ligase (HERC5) reduced virus replication by suppressing the positive effects of ALIX and CHMP4A. Collectively, these results have provided new insights into flavivirus-host cell interactions that function as checkpoints, including the NS3 and the ESCRT proteins, the ISG15 and the ESCRT protein, at essential stages of the virus life cycle. IMPORTANCE Flaviviruses are important zoonotic viruses with high fatality rates worldwide. Here, we report that during infection the virus employs ESCRT protein members for virus replication and assembly. Among the ESCRT proteins, ALIX acts during virus replication, while CHMP4A is required during virus assembly. Other ESCRT protein members such as TSG101 are not required for virus production. The ESCRT, ALIX -CHMP4A complex, is recruited to NS3 through their interactions with the putative L domain motif of NS3, while CHMP4A is recruited to E. In addition, we demonstrate the antiviral mechanism of ISG15 and HERC5, which degrades ALIX and CHIMP4A, indirectly targets virus infection. In summary, we reveal host-dependency factors supporting flavivirus infection, but these factors may also be targeted by antiviral host effector mechanisms.


Cell Reports ◽  
2021 ◽  
Vol 37 (11) ◽  
pp. 110091
Author(s):  
Yibin Zhu ◽  
Chi Zhang ◽  
Liming Zhang ◽  
Yun Yang ◽  
Xi Yu ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3181
Author(s):  
Ming-Kai Jhan ◽  
Chia-Ling Chen ◽  
Ting-Jing Shen ◽  
Po-Chun Tseng ◽  
Yung-Ting Wang ◽  
...  

Infection with flaviviruses causes mild to severe diseases, including viral hemorrhagic fever, vascular shock syndrome, and viral encephalitis. Several animal models explore the pathogenesis of viral encephalitis, as shown by neuron destruction due to neurotoxicity after viral infection. While neuronal cells are injuries caused by inflammatory cytokine production following microglial/macrophage activation, the blockade of inflammatory cytokines can reduce neurotoxicity to improve the survival rate. This study investigated the involvement of macrophage phenotypes in facilitating CNS inflammation and neurotoxicity during flavivirus infection, including the Japanese encephalitis virus, dengue virus (DENV), and Zika virus. Mice infected with different flaviviruses presented encephalitis-like symptoms, including limbic seizure and paralysis. Histology indicated that brain lesions were identified in the hippocampus and surrounded by mononuclear cells. In those regions, both the infiltrated macrophages and resident microglia were significantly increased. RNA-seq analysis showed the gene profile shifting toward type 1 macrophage (M1) polarization, while M1 markers validated this phenomenon. Pharmacologically blocking C-C chemokine receptor 2 and tumor necrosis factor-α partly retarded DENV-induced M1 polarization. In summary, flavivirus infection, such as JEV and DENV, promoted type 1 macrophage polarization in the brain associated with encephalitic severity.


2021 ◽  
Vol 9 (10) ◽  
pp. 2085
Author(s):  
Min-Goo Seo ◽  
Hak Seon Lee ◽  
Sung-Chan Yang ◽  
Byung-Eon Noh ◽  
Tae-Kyu Kim ◽  
...  

The Korea Disease Control and Prevention Agency has established centers at 16 locations to screen vector populations and pathogens. The aims of this study were to determine the relative spatiotemporal distributions of mosquitoes that are flavivirus vectors, and to correlate them with instances of flaviviral disease in the Republic of Korea (ROK). We collected 67,203 mosquitoes in traps at 36 collection sites in 30 urban regions and migratory bird habitats in 2020. The trap index was 36.6, and the predominant mosquito species were the Culex pipiens complex, Armigeres subalbatus, Aedes albopictus, Aedes vexans, and Culex tritaeniorhynchus. The mosquitoes were pooled into 4953 pools to monitor flavivirus infection. We determined that the minimum infection rate of flavivirus was 0.01%. Japanese encephalitis virus (JEV) was detected in only seven pools of Culex orientalis from Sangju, and we isolated JVE from two pools. All detected JEV was found to be genotype V by phylogenetic analysis. To the best of our knowledge, this is the first study to isolate genotype V JVE from Culex orientalis in the ROK. Subsequent geographical and ecological studies on mosquitoes will help improve our understanding of the relative risk of flavivirus infection. Future studies should analyze mosquito species distribution and improve flavivirus monitoring and long-term surveillance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Amelia K. Pinto ◽  
Mariah Hassert ◽  
Xiaobing Han ◽  
Douglas Barker ◽  
Trevor Carnelley ◽  
...  

The closely related flaviviruses, dengue and Zika, cause significant human disease throughout the world. While cross-reactive antibodies have been demonstrated to have the capacity to potentiate disease or mediate protection during flavivirus infection, the mechanisms responsible for this dichotomy are still poorly understood. To understand how the human polyclonal antibody response can protect against, and potentiate the disease in the context of dengue and Zika virus infection we used intravenous hyperimmunoglobulin (IVIG) preparations in a mouse model of the disease. Three IVIGs (ZIKV-IG, Control-Ig and Gamunex®) were evaluated for their ability to neutralize and/or enhance Zika, dengue 2 and 3 viruses in vitro. The balance between virus neutralization and enhancement provided by the in vitro neutralization data was used to predict the IVIG concentrations which could protect or enhance Zika, and dengue 2 disease in vivo. Using this approach, we were able to define the unique in vivo dynamics of complex polyclonal antibodies, allowing for both enhancement and protection from flavivirus infection. Our results provide a novel understanding of how polyclonal antibodies interact with viruses with implications for the use of polyclonal antibody therapeutics and the development and evaluation of the next generation flavivirus vaccines.


Author(s):  
Marcilio Jorge Fumagalli ◽  
Luiz Tadeu Moraes Figueiredo ◽  
Victor Hugo Aquino

This manuscript is an up-to-date review of experimentally validated linear and continuous epitopes identified from arbovirus members of the Flavivirus genus. We summarized 153 immunoreactive peptides from the Dengue virus, Zika virus, Japanese encephalitis virus, West Nile virus, and tick-borne encephalitis virus described in studies published from 1989 to 2020. We included peptides from structural (envelope, capsid, and pre-membrane) and nonstructural (Ns1–5) viral proteins that demonstrated relevant immunoreactivity with antibodies from naturally infected or vaccinated humans. We included peptides that demonstrated relevant reactivity features, such as indicators of disease severity related to immunological or immunopathological outcomes, differential or group diagnostic markers, immunotherapy candidates, and potential for vaccine formulation. The majority of immunoreactive peptides were described for DENV probably due to its long-lasting impact on human health and the lack of efficient vaccines and therapeutic methods. Immune landscape data regarding linear immunoreactive and continuous flavivirus peptides are still scarce, and a complete and more detailed map remains to be elucidated. Therefore, this review provides valuable data for those investigating the antibody response against flavivirus infection.


Author(s):  
Aline Almeida Bentes ◽  
Roberta Maia de Castro Romanelli ◽  
Paula Eillanny Silva Marinho ◽  
Ana Paula Correa Crispim ◽  
Karina Soares Loutfi ◽  
...  

Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 717
Author(s):  
Marina Alves Fontoura ◽  
Rebeca Fróes Rocha ◽  
Rafael Elias Marques

Neutrophils are first-line responders to infections and are recruited to target tissues through the action of chemoattractant molecules, such as chemokines. Neutrophils are crucial for the control of bacterial and fungal infections, but their role in the context of viral infections has been understudied. Flaviviruses are important human viral pathogens transmitted by arthropods. Infection with a flavivirus may result in a variety of complex disease manifestations, including hemorrhagic fever, encephalitis or congenital malformations. Our understanding of flaviviral diseases is incomplete, and so is the role of neutrophils in such diseases. Here we present a comprehensive overview on the participation of neutrophils in severe disease forms evolving from flavivirus infection, focusing on the role of chemokines and their receptors as main drivers of neutrophil function. Neutrophil activation during viral infection was shown to interfere in viral replication through effector functions, but the resulting inflammation is significant and may be detrimental to the host. For congenital infections in humans, neutrophil recruitment mediated by CXCL8 would be catastrophic. Evidence suggests that control of neutrophil recruitment to flavivirus-infected tissues may reduce immunopathology in experimental models and patients, with minimal loss to viral clearance. Further investigation on the roles of neutrophils in flaviviral infections may reveal unappreciated functions of this leukocyte population while increasing our understanding of flaviviral disease pathogenesis in its multiple forms.


Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 902
Author(s):  
Carla E. Gallardo-Flores ◽  
Che C. Colpitts

Cyclophilins are cellular peptidyl-prolyl isomerases that play an important role in viral infections, with demonstrated roles in the replication of hepatitis C virus (HCV) and other viruses in the Flaviviridae family, such as dengue virus (DENV) and yellow fever virus (YFV). Here, we discuss the roles of cyclophilins in HCV infection and provide a comprehensive overview of the mechanisms underlying the requirement for cyclophilins during HCV replication. Notably, cyclophilin inhibitor therapy has been demonstrated to be effective in reducing HCV replication in chronically infected patients. While the roles of cyclophilins are relatively well-understood for HCV infection, cyclophilins are more recently emerging as host factors for flavivirus infection as well, providing potential new therapeutic avenues for these viral infections which currently lack antiviral therapies. However, further studies are required to elucidate the roles of cyclophilins in flavivirus replication. Here, we review the current knowledge of the role of cyclophilins in HCV infection to provide a conceptual framework to understand how cyclophilins may contribute to other viral infections, such as DENV and YFV. Improved understanding of the roles of cyclophilins in viral infection may open perspectives for the development of cyclophilin inhibitors as effective antiviral therapeutics for HCV and related viruses.


Sign in / Sign up

Export Citation Format

Share Document