scholarly journals Recreating Historical Malay Architecture with BIM Process

Author(s):  
Muhammad Hadi Mustafa ◽  
Maisarah Ali ◽  
Khairusy Syakirin Has Yun Hashim ◽  
Mohamad Saifulnizam Mohd Suhaimi

In South-East Asia, the Malay architecture is among the popular subject of research because of its historical importance within the region, apart from many others. To some researchers, the Malay architecture is unique because of its intangible meaning and historically rich design characters. It is difficult to be reproduced, and only limited numbers of people are acknowledged as experts. With the introduction of technology such as BIM, it is hypothesized that the gap can be minimized. The idea of this paper is to outline the process of recreating cultural architectural design using a modern process such as Building Information Modelling (BIM) platform in specific, from data collection using Terrestrial Laser Scanning (TLS) and digitalization process in Revit software. This paper employs observation approach using data from laser scanner collected from case study and content analysis technique. While normally most of the cultural architecture is undocumented, the findings of this activity are aimed to provide guideline to develop geometrical information for heritage-enthusiast in practicing their undertakings.  It is hoped that more historical and cultural architecture can be recreated and appreciated for the use and inspiration of current construction industry

Author(s):  
M. Faltýnová ◽  
E. Matoušková ◽  
J. Šedina ◽  
K. Pavelka

A project started last year called MORE-CONNECT, which focuses on the renovation of buildings (especially building facades) using prefabricated elements. The aim of this project is to create a competitive solution consisting of a technology and processes which enable fast, cost-effective renovation with minimal difficulties to inhabitants. Significant cost savings in renovation costs lies in the usage of prefabricated elements and the reduction of construction works on site. The precision of the prefabricated element depends on the precision of the construction, project and building documentation. This article offers an overview of the possible methods for building documentation and spatial data transfer into BIM (Building Information Modelling) software. The description of methods focuses on laser scanning and photogrammetry (including RPAS based), its advantages, disadvantages and limitations according to the documented building, level of renovation, situation on site etc. The next part involves spatial data transfer into BIM software. A proposed solution is tested in a case study.


Author(s):  
M. Faltýnová ◽  
E. Matoušková ◽  
J. Šedina ◽  
K. Pavelka

A project started last year called MORE-CONNECT, which focuses on the renovation of buildings (especially building facades) using prefabricated elements. The aim of this project is to create a competitive solution consisting of a technology and processes which enable fast, cost-effective renovation with minimal difficulties to inhabitants. Significant cost savings in renovation costs lies in the usage of prefabricated elements and the reduction of construction works on site. The precision of the prefabricated element depends on the precision of the construction, project and building documentation. This article offers an overview of the possible methods for building documentation and spatial data transfer into BIM (Building Information Modelling) software. The description of methods focuses on laser scanning and photogrammetry (including RPAS based), its advantages, disadvantages and limitations according to the documented building, level of renovation, situation on site etc. The next part involves spatial data transfer into BIM software. A proposed solution is tested in a case study.


Buildings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 386
Author(s):  
Aino Keitaanniemi ◽  
Juho-Pekka Virtanen ◽  
Petri Rönnholm ◽  
Antero Kukko ◽  
Toni Rantanen ◽  
...  

An efficient 3D survey of a complex indoor environment remains a challenging task, especially if the accuracy requirements for the geometric data are high for instance in building information modeling (BIM) or construction. The registration of non-overlapping terrestrial laser scanning (TLS) point clouds is laborious. We propose a novel indoor mapping strategy that uses a simultaneous localization and mapping (SLAM) laser scanner (LS) to support the building-scale registration of non-overlapping TLS point clouds in order to reconstruct comprehensive building floor/3D maps. This strategy improves efficiency since it allows georeferenced TLS data to only be collected from those parts of the building that require such accuracy. The rest of the building is measured with SLAM LS accuracy. Based on the results of the case study, the introduced method can locate non-overlapping TLS point clouds with an accuracy of 18–51 mm using target sphere comparison.


2019 ◽  
Vol 18 (4) ◽  
pp. 923-940
Author(s):  
Abdul Rahman Ahsan Usmani ◽  
Abdalrahman Elshafey ◽  
Masoud Gheisari ◽  
Changsaar Chai ◽  
Eeydzah Binti Aminudin ◽  
...  

Purpose Three dimensional (3 D) laser scanner surveying is widely used in many fields, such as agriculture, mining and heritage documentation and can be of great benefit for as-built documentation in construction and facility management domains. However, there is lack of applied research and use cases integrating 3 D laser scanner surveying with building information modeling (BIM) for existing facilities in Malaysia. This study aims to develop a scan to as-built BIM workflow to use 3 D laser scanner surveying and create as-built building information models of an existing complex facility in Malaysia. Design/methodology/approach A case study approach was followed to develop a scan to as-built BIM workflow through four main steps: 3 D laser scanning, data preprocessing, data registration and building information modeling. Findings This case study proposes a comprehensive scan to as-built BIM workflow which illustrates all the required steps to create a precise 3 D as-built building information model from scans. This workflow was successfully implemented to the Eco-Home facility at the Universiti Teknologi Malaysia. Originality/value Scan to as-built BIM is a digital alternative to manual and tedious process of documentation of as-built condition of a facility and provides a detail process using laser scans to create as-built building information models of facilities.


2021 ◽  
Author(s):  
Vincenzo Barrile ◽  
Antonino Fotia

AbstractThere are several studies related to the cultural heritage digitization through HBIM (Heritage Building Information Modelling) techniques. Today, BIM (Building Information Modelling) software cannot represent old buildings with complex prominent and particularly detailed architecture perfectly, and multiple software are combined to obtain the buildings’ representation. In this paper, in order to find an alternative way of replicating the complex details present in antique buildings, a new methodology is presented. The methodology is based on a process of direct insertion of various 3D model parts (.obj), into a BIM environment. These 3D model elements, coming from the points cloud segmentation (from UAV and Laser Scanner), are transformed in intelligent objects and interconnected to form the smart model. The methodology allows to represent detail of the objects that make up an element of cultural heritage, although not standardizable in shape. Although this methodology allows to ensure a perfect reconstruction and digital preservation and to represent the different “defects” that represent and make unique a particular object of cultural heritage, it is not however fast compared with the traditional phases of point cloud tracing and more software are necessary for data processing. The proposed methodology was tested on two specific structures’ reconstruction in Reggio Calabria (South Italy): the Sant’Antonio Abate church and the Vitrioli’s portal.


Buildings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 323
Author(s):  
Vachara Peansupap ◽  
Pisal Nov ◽  
Tanit Tongthong

The kingpost was a vertical element that was used to support the structural strut in the deep excavation. The structural kingpost was commonly arranged by experienced engineers who used two-dimensional construction drawings. Thus, it was still time-consuming and error-prone. Currently, an available construction program has been developed to arrange the structural kingpost by identifying the clash problems in the 3D environment. However, they have a limitation for detecting the clash that was unable to visualize the concurrent clashes between kingpost and many underground structures. Then, the engineer cannot see all the clash incidents with each kingpost and move the kingpost to avoid the clashes successfully. Since the kingpost arrangement was still an inefficient practice that was limited in the visualization aspect, this research used engineering knowledge and advanced construction technology to detect and solve the clashes between kingposts and underground structures. The methodology used engineering knowledge of kingpost arrangement to develop the system modules by using a rule-based approach. Then, these modules were developed into the system by using visual programming of Building Information Modelling (BIM). To test the system, an underground structure from building construction was selected as a case study to apply the developed system. Finally, the finding of this study could overcome human judgment by providing less interaction in the kingpost arrangement and visualization improvement of clash occurrences in the 3D model.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
S. Hemalattha ◽  
R. Vidjeapriya

PurposeThis study aims to develop a framework for optimizing the spatial requirements of the equipment in a construction site using a geographic information system (GIS).Design/methodology/approachAn ongoing construction project, an existing thermal powerplant in India, is considered to be the case study, and the corresponding construction activities were scheduled. The equipment spaces were defined for the scheduled activities in building information modelling (BIM), which was further imported to GIS to define the topology rules, validate and optimize the spatial requirements. The BIM simulates the indoor environment, which includes the actual structure being constructed, and the GIS helps in modelling the outdoor environment, which includes the existing structures, temporary facilitates, topography of the site, etc.; thus, this study incorporates the knowledge of BIM in a geospatial environment to obtain optimized equipment spaces for various activities.FindingsSpace in construction projects is to be considered as a resource as well as a constraint, which is to be modelled and planned according to the requirements. The integration of BIM and GIS for equipment space planning will enable precise identification of the errors in the equipment spaces defined and also result in fewer errors as possible. The integration has also eased the process of assigning the topology rules and validating the same, which otherwise is a tedious process.Originality/valueThe workspace for each activity will include the space of the equipment. But, in most of the previous works of workspace planning, only the labour space is considered, and the conflicts and congestions occurring due to the equipment were neglected. The planning of equipment spaces cannot be done based only on the indoor environment; it has to be carried out by considering the surroundings and topography of the site, which have not been researched extensively despite its importance.


Sign in / Sign up

Export Citation Format

Share Document