Two–Soliton Solutions Of The Kadomtsevpetviashvili Equation

2012 ◽  
Author(s):  
Wei King Tiong ◽  
Chee Tiong Ong ◽  
Mukheta Isa

Beberapa keputusan tentang penjanaan penyelesaian soliton oleh persamaan Kadomtsev–Petviashvili akan dibincangkan dalam kertas ini. Kaedah teori kumpulan mampu memberikan penyelesaian secara analitik kerana persamaan KP mempunyai ketakterhinggaan banyaknya hukum keabadian. Dengan kaedah Bilinear Hirota, ditunjukkan melalui simulasi berkomputer bagaimana penyelesaian dua soliton persamaan KP mampu menghasilkan strukturstruktur “triad”, kuadruplet dan struktur tak beresonan dalam interaksi soliton. Kata kunci: Soliton, kaedah Bilinear Hirota, persamaan Kortewegde Vries dan Kadomtsev- Petviashvili Several findings on soliton solutions generated by the Kadomtsev–Petviashvili (KP) equation were discussed in this paper. This equation is a two dimensional of the Korteweg–de Vries (KdV) equation. Traditional group–theoretical approach can generate analytic solution of solitons because KP equation has infinitely many conservation laws. By using Hirota Bilinear method, we show via computer simulation how two solitons solution of KP equation produces triad, quadruplet and a non–resonance structures in soliton interactions. Key words: Soliton, Hirota Bilinear method, Korteweg-de Vries and Kadomtsev-Petviashvili equations

2010 ◽  
Vol 65 (12) ◽  
pp. 1101-1105
Author(s):  
Abdul-Majid Wazwaz

In this work we present a reliable treatment for two (2+1)-dimensional Korteweg-de Vries-like and Kadomtsev-Petviashvili-like equations. The Hirota bilinear method will be used to show that these two equations are not completely integrable equations. Unlike the completely integrable Korteweg-de Vries and Kadomtsev-Petviashvili equations, where multiple soliton solutions exist, only one-soliton and two-soliton solutions can be derived for each of the Korteweg-de Vries-like and Kadomtsev- Petviashvili-like equations.


2019 ◽  
Vol 33 (05) ◽  
pp. 1950019 ◽  
Author(s):  
Iftikhar Ahmed ◽  
Aly R. Seadawy ◽  
Dianchen Lu

In this study, based on the Hirota bilinear method, mixed lump-solitons, periodic lump and breather soliton solutions are derived for (2 + 1)-dimensional extended KP equation with the aid of symbolic computation. Furthermore, dynamics of these solutions are explained with 3d plots and 2d contour plots by taking special choices of the involved parameters. Through the mixed lump-soliton solutions, we observe two fusion phenomena, first from interaction of lump and single soliton and other from interaction of lump with two solitons. In both cases, lump moves gradually towards soliton and transfers energy until it completely merges with the solitons. We also observe new characteristics of periodic lump solutions and kinky breather solitons.


Author(s):  
Shuxin Yang ◽  
Zhao Zhang ◽  
Biao Li

On the basis of the Hirota bilinear method, resonance Y-shaped soliton and its interaction with other localized waves of (2+1)-dimensional bidirectional Sawada–Kotera equation are derived by introducing the constraint conditions. These types of mixed soliton solutions exhibit complex interaction phenomenon between the resonance Y-shaped solitons and line waves, breather waves, and high-order lump waves. The dynamic behaviors of the interaction solutions are analyzed and illustrated.


2009 ◽  
Vol 23 (25) ◽  
pp. 5003-5015 ◽  
Author(s):  
XING LÜ ◽  
TAO GENG ◽  
CHENG ZHANG ◽  
HONG-WU ZHU ◽  
XIANG-HUA MENG ◽  
...  

In this paper, the (2+1)-dimensional Sawada-Kotera equation is studied by the truncated Painlevé expansion and Hirota bilinear method. Firstly, based on the truncation of the Painlevé series we obtain two distinct transformations which can transform the (2+1)-dimensional Sawada-Kotera equation into two bilinear equations of different forms (which are shown to be equivalent). Then employing Hirota bilinear method, we derive the analytic one-, two- and three-soliton solutions for the bilinear equations via symbolic computation. A formula which denotes the N-soliton solution is given simultaneously. At last, the evolutions and interactions of the multi-soliton solutions are graphically discussed as well. It is worthy to be noted that the truncated Painlevé expansion provides a useful dependent variable transformation which transforms a partial differential equation into its bilinear form and by means of the bilinear form, further study of the original partial differential equation can be conducted.


2009 ◽  
Vol 87 (12) ◽  
pp. 1227-1232 ◽  
Author(s):  
Abdul-Majid Wazwaz

In this work we study two systems of coupled KdV and coupled KP equations. The Hirota bilinear method is applied to show that these two systems are completely integrable. Multiple-soliton solutions and multiple singular-soliton solutions are derived for each system. The resonance phenomenon is examined as well.


2012 ◽  
Vol 26 (19) ◽  
pp. 1250072 ◽  
Author(s):  
YI ZHANG ◽  
ZHILONG CHENG

In this paper, the time-dependent variable-coefficient KdV equation with a forcing term is considered. Based on the Hirota bilinear method, the bilinear form of this equation is obtained, and the multi-soliton solutions are studied. Then the periodic wave solutions are obtained by using Riemann theta function, and it is also shown that classical soliton solutions can be reduced from the periodic wave solutions.


2021 ◽  
Vol 6 (10) ◽  
pp. 11046-11075
Author(s):  
Wen-Xin Zhang ◽  
◽  
Yaqing Liu

<abstract><p>In this paper, the reverse space cmKdV equation, the reverse time cmKdV equation and the reverse space-time cmKdV equation are constructed and each of three types diverse soliton solutions is derived based on the Hirota bilinear method. The Lax integrability of three types of nonlocal equations is studied from local equation by using variable transformations. Based on exact solution formulae of one- and two-soliton solutions of three types of nonlocal cmKdV equation, some figures are used to describe the soliton solutions. According to the dynamical behaviors, it can be found that these solutions possess novel properties which are different from the ones of classical cmKdV equation.</p></abstract>


2020 ◽  
pp. 2150060
Author(s):  
Wen-Tao Huang ◽  
Cheng-Cheng Zhou ◽  
Xing Lü ◽  
Jian-Ping Wang

Under investigation in this paper is the dynamics of dispersive optical solitons modeled via the Schrödinger–Hirota equation. The modulation instability of solutions is firstly studied in the presence of a small perturbation. With symbolic computation, the one-, two-, and three-soliton solutions are obtained through the Hirota bilinear method. The propagation and interaction of the solitons are simulated, and it is found the collision is elastic and the solitons enjoy the particle-like interaction properties. In the end, the asymptotic behavior is analyzed for the three-soliton solutions.


2010 ◽  
Vol 65 (3) ◽  
pp. 173-181 ◽  
Author(s):  
Abdul-Majid Wazwaz

In this work, the generalized (2+1) and (3+1)-dimensional Calogero-Bogoyavlenskii-Schiff equations are studied. We employ the Cole-Hopf transformation and the Hirota bilinear method to derive multiple-soliton solutions and multiple singular soliton solutions for these equations. The necessary conditions for complete integrability of each equation are derived


Sign in / Sign up

Export Citation Format

Share Document