Strength and Ductility of High-Strength Concrete Cylinders Externally Confined with Steel Strapping Tensioning Technique (SSTT)

2014 ◽  
Vol 68 (1) ◽  
Author(s):  
Hoong-Pin Lee ◽  
Abdullah Zawawi Awang ◽  
Wahid Omar

This research study is to introduce and investigate an effective technique of external pre-tensioning using steel strapping (SSTT) to reduce the brittleness and enhance the ductility of high-strength concrete cylinders.  Fifteen cylinders with dimension of 150 mm and 300 mm in diameter and height respectively were casted, pre-tensioned with two and four layers of steel strapping and tested to failure under uniaxial monotonic and cyclic compression. The behaviour of SSTT confined cylinders was studied through their stress-strain relationship upon the longitudinal deflection, transverse strain, mode of failure, confinement ratio, and existence of an envelope curve. It is experimentally proved that SSTT confinement do helps in controlling the brittleness problem of high-strength concrete and at the same time, enhancing both the concrete ductility and compressive strength up to 46.2 % and 112.5 % respectively. The envelope curve of uniaxial cyclic loading also coincides with the corresponding monotonic loading curve, regardless of any loading activity. The observed stress-strain relationship of confined cylinders with different confining ratios are compared with existing strength and strain models and a stress-strain prediction model, the result showed a linear relationship between the compressive strength and strain enhancement and confining ratio, with acceptable agreement between the prediction model.

2001 ◽  
Vol 17 (4) ◽  
pp. 679-695 ◽  
Author(s):  
Armen Martirossyan ◽  
Yan Xiao

This paper discusses the seismic performance of high-strength concrete columns. The research is a part of an ongoing comprehensive experimental program to investigate seismic design methods of high-strength concrete structures. The first stage of the program involved testing of fifteen high-strength concrete stub columns under concentric axial compression. The concrete compressive strength was about 69 MPa (10,000 psi). In addition, a large database including eighty-six similar tests conducted by other researchers was constructed, and stress-strain behavior of high-strength concrete was investigated. Based on the analysis, a stress-strain relationship for high-strength concrete columns was proposed. Secondly, six 1/3-1/2 scale high-strength concrete short columns were tested under combined axial load and cyclic shear, with double curvature condition. The primary experimental parameters included axial load ratio, longitudinal reinforcement ratio, and volumetric ratio of transverse reinforcement. The proposed stress-strain relationship was used in the analysis of the lateral force–displacement relationship for high-strength concrete columns. Moment-curvature analysis, based on proposed equivalent stress block approach, as well as plastic hinge mechanism, has been incorporated in this analytical tool. The analytical results agreed well with the primary load-deflection envelopes obtained from the tests.


Sign in / Sign up

Export Citation Format

Share Document