steel fibre
Recently Published Documents


TOTAL DOCUMENTS

1160
(FIVE YEARS 319)

H-INDEX

44
(FIVE YEARS 10)

2022 ◽  
Vol 254 ◽  
pp. 113752
Author(s):  
Gerrit E. Neu ◽  
Philipp Edler ◽  
Steffen Freitag ◽  
Vladislav Gudžulić ◽  
Günther Meschke

2022 ◽  
Vol 318 ◽  
pp. 125906
Author(s):  
Nelly Majain ◽  
Ahmad Baharuddin Abd. Rahman ◽  
Azlan Adnan ◽  
Roslli Noor Mohamed

2022 ◽  
Vol 12 (2) ◽  
pp. 561
Author(s):  
Simon Cleven ◽  
Michael Raupach ◽  
Thomas Matschei

The diagnostics of constructions built with steel fibre reinforced concrete are extremely difficult to conduct because, typically, no information on the actual amount and orientation of the fibres is available. Therefore, it is of great interest to engineers to have the possibility to determine the steel fibre content and, at best, also the orientation of the fibres in existing structures. For this purpose, an easy-to-use test setup was developed and tested, in the course of laboratory investigations. This method can be used for cylinders, for example drilling cores, that can later be taken of existing structures, to determine both the fibre content and orientation. Based on these results, a model for cylindrical specimens was derived, which can be used for varying concrete compositions with steel fibre contents of up to 80 kg/m3. In the case of missing information concerning the concrete composition, it allows an initial estimation for the fibre content. In case additional information about the concrete composition is available, a much higher accuracy of the projected steel fibre content and therefore, an assessment of the building’s condition is possible.


2022 ◽  
Vol 12 (1) ◽  
pp. 454
Author(s):  
Simon Cleven ◽  
Michael Raupach ◽  
Thomas Matschei

The in-situ measurement of the content and orientation of steel fibres in concrete structures is of great importance for the assessment of their specific mechanical properties, especially in the case of repair. For existing structures, the actual fibre content as well as the orientation of the fibres, which is based on many factors such as casting or compacting direction, is typically unknown. For structural maintenance or rehabilitation, those factors have to be determined in order to apply meaningful structural design calculations and plan necessary strengthening methods. For this reason, a new method based on the analysis of drilling cores of concrete structures has been established. The newly developed non-destructive test setup used in this research consists of a framework for cylindrical specimens in combination with an LCR meter to determine the electrical resistance of the fibre reinforced concrete. In combination with a suitable FEM model, concretes with fibre contents up 80 kg/m3 were analysed to derive a first model to assess the actual fibre content of steel fibre reinforced concretes. After a calibration of the literature’s equation by use of an adjusted aspect ratio for the analysis of drilling cores, the estimation of the fibre content is possible with high accuracy for the tested material combination. The results show that the newly developed test method is suitable for the rapid and non-destructive structural diagnosis of the fibre content of steel fibre reinforced concrete based on drilling cores using electrical resistivity measurements.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 340
Author(s):  
Parthiban Kathirvel ◽  
Gunasekaran Murali ◽  
Nikolai Ivanovich Vatin ◽  
Sallal R. Abid

It appears that the awareness and intentions to use recycled concrete aggregate (RCA) in concrete are expanding over the globe. The production of self-compacting concrete (SCC) using RCA is an emerging field in the construction sector. However, the highly porous and absorptive nature of adhered mortar on RCA’s surface leads to reduced concrete strength, which can be removed with the application of various techniques, such as acid treatment. This study investigated the effect of the partial replacement of silica fume by cement and natural aggregate (NA) by RCA with and without steel fibre. The used RCA was treated with magnesium sulphate solution. It was immersed in solutions with different concentrations of 10%, 15% and 20% and for different periods of 5, 10 and 15 days. Sixteen mixes were prepared, which were divided into six groups with or without 1% of steel fibre content. The fresh properties, compressive strength, split tensile strength and impact resistance were examined. The results revealed that the strengths of the mixes with 20% RCA were marginally better than those of the control mixes. The compressive strength and split tensile strength were reduced by 34% and 35% at 60% RCA content, respectively, as compared to the control mixes.


2022 ◽  
Vol 316 ◽  
pp. 125896
Author(s):  
Meng Chen ◽  
Hanqing Si ◽  
Xiaochun Fan ◽  
Yiwei Xuan ◽  
Mingzhong Zhang

Sign in / Sign up

Export Citation Format

Share Document