short columns
Recently Published Documents


TOTAL DOCUMENTS

490
(FIVE YEARS 186)

H-INDEX

31
(FIVE YEARS 8)

Author(s):  
Hazem Elbakry ◽  
Tarek Ebeido ◽  
El-Tony M. El-Tony ◽  
Momen Ali

Reinforced concrete columns consume large quantities of ties, especially inner cross-ties in columns with large dimensions. In some cases, nesting of the pillars occurs as a result of the presence of cross-ties. The main objective of this paper is to develop new methods for transverse reinforcement in RC columns and investigate their effect on the behavior of the columns. The proposed V-ties as transverse reinforcement replacing the ordinary and cross-ties details are economically feasible. They facilitate shorter construction periods and decrease materials and labor costs. For this purpose, experimental and numerical studies are carried out. In the experimental program, nine reinforced concrete columns with identical concrete dimensions and longitudinal reinforcing bars were prepared and tested under concentric axial load with different tie configurations. The main parameters were the tie configurations and the length (lv) of V-tie legs. As part of the numerical study, the finite element model using the ABAQUS software program obtained good agreement with the experimental results of specimens. A numerical parametric study was carried out to study the influence of concrete compressive strength and longitudinal reinforcement ratio on the behavior of RC columns with the considered tie configurations. Based on the experimental and numerical results, it was found that using V-tie techniques instead of traditional ties could increase the axial load capacity of columns, restrain early local buckling of the longitudinal reinforcing bars and improve the concrete core confinement of reinforced concrete columns.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 329
Author(s):  
Jun Wang ◽  
Xinran Wang ◽  
Yuxin Duan ◽  
Yu Su ◽  
Xinyu Yi

At present, the existing standards (AISC360-16, EN1994-1-1:2004, and JGJ138-2016) lack relevant provisions for steel-reinforced concrete (SRC) composite columns with high-strength steel. To investigate the axial compressive mechanical performance of short high-strength steel-reinforced concrete (HSSRC) columns, the axial load test was conducted on 12 short composite columns with high-strength steel and ordinary steel. The influences of steel strength, steel ratio, and the section form of steel on the failure modes, bearing capacity, and ductility of the specimens were studied. Afterward, the experimental data were compared with the existing calculation results. The results show: compared with the specimens with Q235 steel, the bearing capacity of the specimens with Q460 steel increases by 7.8–15.3%, the bearing capacity of the specimens with Q690 steel increases by 13.2–24.1%, but the ductility coefficient increases by 15.2–202.4%; with the increase of steel ratio, the bearing capacity and ductility of specimens are significantly improved. A change of the steel cross-section could influence the ductility of SRC columns more than their bearing capacity. Moreover, the calculation results show that present standards could not predict the bearing capacity of HSSRC columns. Therefore, a modified method for determining the effective strength of steel equipped in HSSRC columns was proposed. The results of the ABAQUS simulation also showed that the addition of steel fibers could significantly improve the bearing capacity of Q690 HSSRC columns. The research results provide a reference for engineering practices.


Author(s):  
Fábio Masini Rodrigues ◽  
Armando Lopes Moreno Júnior ◽  
Jorge Munaiar Neto

Abstract The increase in temperature reduces the strength of steel and concrete, in such a way that it is essential to verify concrete-filled steel tube columns in fire situations. Numerical simulations, with lower costs than laboratory tests, have great importance in checking resistance and defining simplified methods for design practice. However, peculiarities of the thermal and mechanical behavior of heated confined concrete and the air-gap effect (a phenomenon inherent to concrete-filled steel columns) must still be better understood. Therefore, this study presents the development of a numerical model performed in the ABAQUS software (Dassault Systemes SIMULIA Corp., 2014) for the thermomechanical analysis of short columns composed of circular and square concrete-filled steel tubes considering the air-gap effect. The air-gap phenomenon is presented and analyzed according to possibilities of implementation to the numerical model and, finally, the proposed numerical model is validated with experimental results presented in the literature. According to the study results, the numerical model can be used to define and adjust simplified methods for verification of composite columns in fire situation. The importance of considering the air-gap effect in numerical modeling was confirmed, taking into account that disregarding its effect may result in overestimated responses of the steel tube resistance in fire situations. Moreover, it was suggested thermomechanical joint analysis and the use of the explicit solver as a strategy to minimize processing time.


2022 ◽  
Vol 170 ◽  
pp. 108638
Author(s):  
Rohola Rahnavard ◽  
Hélder D. Craveiro ◽  
Rui A. Simões ◽  
Luís Laím ◽  
Aldina Santiago

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 167
Author(s):  
Patryk Rozylo

The novelty of this paper, in relation to other thematically similar research papers, is the comparison of the failure phenomenon on two composite profiles with different cross-sections, using known experimental techniques and advanced numerical models of composite material failure. This paper presents an analysis of the failure of thin-walled structures made of composite materials with top-hat and channel cross-sections. Both experimental investigations and numerical simulations using the finite element method (FEM) are applied in this paper. Tests were conducted on thin-walled short columns manufactured of carbon fiber reinforced polymer (CFRP) material. The experimental specimens were made using the autoclave technique and thus showed very good strength properties, low porosity and high surface smoothness. Tests were carried out in axial compression of composite profiles over the full range of loading—up to total failure. During the experimental study, the post-buckling equilibrium paths were registered, with the simultaneous use of a Zwick Z100 universal testing machine (UTM) and equipment for measuring acoustic emission signals. Numerical simulations used composite material damage models such as progressive failure analysis (PFA) and cohesive zone model (CZM). The analysis of the behavior of thin-walled structures subjected to axial compression allowed the evaluation of stability with an in-depth assessment of the failure of the composite material. A significant effect of the research was, among others, determination of the phenomenon of damage initiation, delamination and loss of load-carrying capacity. The obtained results show the high qualitative and quantitative agreement of the failure phenomenon. The dominant form of failure occurred at the end sections of the composite columns. The delamination phenomenon was observed mainly on the outer flanges of the structure.


Sign in / Sign up

Export Citation Format

Share Document