scholarly journals Low cost palm oil fuel ash based ceramic membranes for oily water separation

2018 ◽  
Vol 14 (4) ◽  
pp. 419-424 ◽  
Author(s):  
Zhong Sheng Tai ◽  
Mohd Hafiz Dzarfan Othman ◽  
Siti Khadijah Hubadillah ◽  
Ahmad Fauzi Ismail ◽  
Mukhlis A Rahman ◽  
...  

Ceramic membranes have been gaining so much interest for oily water separation due to their superior characteristics such as good anti-fouling property, superhydrophilic, as well as excellent thermal and chemical stabilities. However, ceramic membranes are very expensive which hinders their uses in large scale applications. Therefore, the aim of our study is to develop a low cost palm oil fuel ash (POFA) based ceramic hollow fiber ceramic membrane for oily water separation application. An asymmetric membrane structure consisting of sponge-like and macrovoid layers were acquired using a combined phase inversion and sintering technique. The membranes were sintered at different temperatures ranging from 1000 to 1150 °C. The sintered membranes were characterized in terms of morphology, mechanical strength, porosity, permeate flux and oil rejection performance. A high oil rejection efficiency of up to 96.0% was obtained for the membrane sintered at 1050 °C with the permeate flux of 185.42 L/m2h at the applied pressure of 3 bar. Based on the comparison with other ceramic membranes reported in the literature, it can be concluded that POFA based ceramic hollow fiber membrane showed a comparable performance and thus can be a promising low cost alternative ceramic membrane for oily water separation application.

2018 ◽  
Vol 25 (22) ◽  
pp. 21644-21655 ◽  
Author(s):  
Mohamad Sukri Mohamad Yusof ◽  
Mohd Hafiz Dzarfan Othman ◽  
Azeman Mustafa ◽  
Mukhlis Abdul Rahman ◽  
Juhana Jaafar ◽  
...  

2019 ◽  
Vol 222 ◽  
pp. 264-277 ◽  
Author(s):  
Zhong Sheng Tai ◽  
Siti Khadijah Hubadillah ◽  
Mohd Hafiz Dzarfan Othman ◽  
Mohd Irfan Hatim Mohamed Dzahir ◽  
Khong Nee Koo ◽  
...  

2015 ◽  
Vol 815 ◽  
pp. 29-33 ◽  
Author(s):  
Liyana Ahmad Sofri ◽  
Mohd Zulham Affandi Mohd Zahid ◽  
Nur Fitriah Isa ◽  
Muhammad Azizi Azizan ◽  
Muhammad Munsif Ahmad ◽  
...  

Palm Oil Fuel Ash (POFA) is one of the solid waste in Malaysia and had trouble with the ash removal. Therefore, the use of waste oil palm ash can overcome the problem of solid waste. POFA is a pozzolanic material and it can act as a replacement of cement (OPC) to produce concrete with higher strength and low cost. POFA quality will increase as the range made up to a medium level of fineness in the size of 50 microns. POFA used to replace OPC is 0%, 10%, 30% and 50% by weight percent of OPC. POFA concrete compressive strength will be tested after a curing process that concrete age of 7 days and 28 days. POFA concrete density is also tested and compared with OPC concrete. Results showed that compressive strength POFA lower than normal concrete. On the other hand, the replacement of cement by 10% POFA shows a record high in compressive strength compared with other POFA mixing at the age of 7 days and 28 days. Fineness pozzolanic POFA is the best material and can be used as a cement replacement alternative.


2019 ◽  
Vol 44 (37) ◽  
pp. 20815-20825 ◽  
Author(s):  
Chi Cheng Chong ◽  
Nornasuha Abdullah ◽  
Syahida Nasuha Bukhari ◽  
Nurul Ainirazali ◽  
Lee Peng Teh ◽  
...  

2011 ◽  
Vol 8 (1) ◽  
pp. 333-339 ◽  
Author(s):  
Z. Chowdhury ◽  
S. M. Zain ◽  
A. K. Rashid

The low cost adsorbent palm oil fuel ash (POFA) derived from an agricultural waste material was investigated as a replacement of current expensive methods for treating wastewater contaminated by Pb(II) cation. Adsorption studies were carried out to delineate the effect of contact time, temperature, pH and initial metal ion concentration. The experimental data followed pseudo second order kinetics which confirms chemisorptions. The values of Langmuir dimensionless constant, RLand Freundlich constant, 1/n were less than 1 representing favorable process for adsorption. Thermodynamic parameters such as ΔG°, ΔH°and ΔS°, related to Gibbs free energy, enthalpy and entropy were evaluated. It was concluded that, chemically treated palm oil fuel ash (POFA) can be used successfully for adsorption of Pb(II) from aqueous solution.


2016 ◽  
Vol 9 (2) ◽  
pp. 120-128
Author(s):  
Haspiadi Haspiadi ◽  
Kurniawaty Kurniawaty

Research of  the utilization solid waste of palm oil fuel ash from boiler as row materials  for manufacturing light concrete brick has been conducted. The main objective of this study is to investigate the potential use solid waste of palm oil fuel ash from palm oil mill boilers as row materials for manufacturing light concrete brick has recently attracted for an alternative environmentally sustainable application. In this study, light concrete brick made with various proportions of palm oil fuel ash from palm oil mill boilers and sand were fabricated and studied under laboratory scales. Percentage of palm oil fuel ash of 0% as a control,  10%, 20%, 30%, 40%, 50%, 60%, replacement  sand, wheras others materials such as Portland cement, lime, gypsum, foaming agent and aluminium with the numbers constant. The quality of light concreate brick   were applied followed by the compressive strength test, density and water absorption capacity. The study discovered that the compressive strength for all composition meet the recommended value to light structural of 6.89 MPa as prescribed in SNI 03-3449-2002. In the same manner density of light concrete brick for all proportion under the maximum density recommended value of 1400 Kg/m3 according to SNI 03-3449-2002. While water absorption capacity of increased by the increasing use of ashes. Therefore, palm oil fuel ash from boiler can be used as raw material for the light concrete brick which is  environmental friendly because using solid waste and also an alternative handling solid waste.ABSTRAKPenelitian pemanfaatan limbah padat abu cangkang dan serat kelapa sawit dari boiler sebagai bahan baku pembuatan bata beton ringan telah dilakukan. Tujuan dari penelitian ini adalah pemanfaatan limbah padat abu boiler berbahan bakar cangkang dan serat sebagai bahan pembuatan bata beton ringan sebagai salah satu alternatif pengelolaan lingkungan yang bekelanjutan. Dalam penelitian ini, bata beton ringan dibuat dengan berbagai komposisi abu boiler dan pasir yang diproduksi dalam  skala laboratorium. Persentase dari abu berturut-turut 0% sebagai kontrol, 10%, 20%, 30%, 40%, 50% dan 60% mensubtitusi pasir, sedangkan bahan lain yaitu semen, kapur, gypsum,  foaming  agent serta aluminium pasta dengan jumlah tetap. Mutu bata beton ringan yang diujikan adalah kuat tekan, bobot jenis dan daya serap air. Hasil penelitian menunjukkan bahwa kuat tekan untuk semua komposisi memenuhi batas minimum yang dipersyaratkan untuk stuktural ringan yaitu 6,89 MPa sesuai SNI 03-3449-2002. Demikian pula bobot jenis dari bata ringan yang dihasilkan masih dibawah dari batas maksimum yang direkomendasikan SNI 03-3449-2002 yaitu maksimal 1400 Kg/m3. Sedangkan daya serap air mengalami kenaikan dengan naiknya jumlah abu yang digunakan . Limbah padat abu boiler berbahan bakar cangkang dan serat sawit dapat dimanfaatkan sebagai bahan baku pembuatan bata beton ringan yang ramah lingkungan dengan memanfaatkan limbah dan menjadi salah satu alternatif pengelolaan limbah. Kata kunci :  Abu cangkang kelapa sawit,  bata beton ringan, bobot jenis,  daya serap air,  limbah,  kuat tekan


2021 ◽  
Vol 1136 (1) ◽  
pp. 012046
Author(s):  
Bala Gopal Adapala ◽  
Durga Chaitanya Kumar Jagarapu ◽  
Syed Hamim Jeelani ◽  
B. Sarath Chandra Kumar ◽  
Arunakanthi Eluru

2019 ◽  
Author(s):  
Salahaldin M. A. Abuabdou ◽  
Ong Wei Teng ◽  
Mohammed J. K. Bashir ◽  
Ng Choon Aun ◽  
Sumathi Sethupathi

Sign in / Sign up

Export Citation Format

Share Document