Synergistic effects of waste plastic food tray as low-cost fibrous materials and palm oil fuel ash on transport properties and drying shrinkage of concrete

2021 ◽  
pp. 102826
Author(s):  
Hossein Mohammadhosseini ◽  
Shek Poi Ngian ◽  
Rayed Alyousef ◽  
Mahmood Md. Tahir
2021 ◽  
Vol 13 (4) ◽  
pp. 2073 ◽  
Author(s):  
Hossein Mohammadhosseini ◽  
Rayed Alyousef ◽  
Mahmood Md. Tahir

Recycling of waste plastics is an essential phase towards cleaner production and circular economy. Plastics in different forms, which are non-biodegradable polymers, have become an indispensable ingredient of human life. The rapid growth of the world population has led to increased demand for commodity plastics such as food packaging. Therefore, to avert environment pollution with plastic wastes, sufficient management to recycle this waste is vital. In this study, experimental investigations and statistical analysis were conducted to assess the feasibility of polypropylene type of waste plastic food tray (WPFT) as fibrous materials on the mechanical and impact resistance of concrete composites. The WPFT fibres with a length of 20 mm were used at dosages of 0–1% in two groups of concrete with 100% ordinary Portland cement (OPC) and 30% palm oil fuel ash (POFA) as partial cement replacement. The results revealed that WPFT fibres had an adverse effect on the workability and compressive strength of concrete mixes. Despite a slight reduction in compressive strength of concrete mixtures, tensile and flexural strengths significantly enhanced up to 25% with the addition of WPFT fibres. The impact resistance and energy absorption values of concrete specimens reinforced with 1% WPFT fibres were found to be about 7.5 times higher than those of plain concrete mix. The utilisation of waste plastic food trays in the production of concrete makes it low-cost and aids in decreasing waste discarding harms. The development of new construction materials using WPFT is significant to the environment and construction industry.


2018 ◽  
Vol 25 (22) ◽  
pp. 21644-21655 ◽  
Author(s):  
Mohamad Sukri Mohamad Yusof ◽  
Mohd Hafiz Dzarfan Othman ◽  
Azeman Mustafa ◽  
Mukhlis Abdul Rahman ◽  
Juhana Jaafar ◽  
...  

2018 ◽  
Vol 34 ◽  
pp. 01008
Author(s):  
Nor Hasanah Abdul Shukor Lim ◽  
Mostafa Samadi ◽  
Abdul Rahman Mohd. Sam ◽  
Nur Hafizah Abd Khalid ◽  
Noor Nabilah Sarbini ◽  
...  

This paper studies the drying shrinkage of mortar incorporating oil palm biomass waste including Palm Oil Fuel Ash, Oil Palm Kernel Shell and Oil Palm Fibre. Nano size of palm oil fuel ash was used up to 80 % as cement replacement by weight. The ash has been treated to improve the physical and chemical properties of mortar. The mass ratio of sand to blended ashes was 3:1. The test was carried out using 25 × 25 × 160 mm prism for drying shrinkage tests and 70 × 70 ×70 mm for compressive strength test. The results show that the shrinkage value of biomass mortar is reduced by 31% compared with OPC mortar thus, showing better performance in restraining deformation of the mortar while the compressive strength increased by 24% compared with OPC mortar at later age. The study gives a better understanding of how the biomass waste affect on mortar compressive strength and drying shrinkage behaviour. Overall, the oil palm biomass waste can be used to produce a better performance mortar at later age in terms of compressive strength and drying shrinkage.


2012 ◽  
Vol 626 ◽  
pp. 245-249 ◽  
Author(s):  
Nurdeen M. Altwair ◽  
M.A. Megat Johari ◽  
Syed Fuad Saiyid Hashim

The present paper is a part of an extensive study on green palm oil fuel ash engineered cementitious composites conducted at Universiti Sains Malaysia. It specifically investigates the effects of waterbinder ratio (w/b) and palm oil fuel ash (POFA) on the drying shrinkage of engineered cementitious composites (ECCs). W/b values of 0.33, 0.36, and 0.38 were selected. ECC mixes were proportioned to have various ratios of POFA ranging from 0 to 1.2 from the mass of cement. The drying shrinkage measurements were taken at 4, 11, 18, 25, 57, and 90 days. The experimental results show that w/b has a significant effect on the drying shrinkage of the ECC mixtures. Drying shrinkage is remarkably reduced with a decrease in the w/b. The results also showed that drying shrinkage of the composites is considerably reduced when POFA is used in the matrix. The measured drying shrinkage strain at 90 days is only 920×10-6 µε to 1216×10-6 µε for ECC mixtures with high POFA content. The shrinkage strain of the ECC mixtures without POFA at 90 days is nearly 1597×10-6 µε to 1910×10-6 µε.


2014 ◽  
Vol 567 ◽  
pp. 529-534 ◽  
Author(s):  
Belal Alsubari ◽  
Payam Shafigh ◽  
Mohd Zamin Jumaat ◽  
Ubagaram Johnson Alengaram

In this study ground palm oil fuel ash (POFA) has been used as cement replacement in percentages of 0%, 10%, and 20% in a self-compacting concrete (SCC). Fresh properties such as slump flow, T50, V-funnel, J-ring, L-box and segregation index; concrete properties such as drying shrinkage strain, initial surface absorption test (ISAT) as well as compressive strength were investigated. Test results showed that substitution of cement with POFA up to 20%, the fresh properties of the concrete fulfilled the requirements of a self-compacting concrete. The results revealed that concrete has higher compressive strength, lower drying shrinkage, and lower initial surface absorption than control mix. The results indicated that POFA can be used up to 20% as a cement replacement material for producing self-compacting concrete.


2022 ◽  
Vol 14 (1) ◽  
pp. 498
Author(s):  
Ghasan Fahim Huseien ◽  
Mohammad Ali Asaad ◽  
Aref A. Abadel ◽  
Sib Krishna Ghoshal ◽  
Hussein K. Hamzah ◽  
...  

Nowadays, an alkali-activated binder has become an emergent sustainable construction material as an alternative to traditional cement and geopolymer binders. However, high drying shrinkage and low durability performance in aggressive environments such as sulphuric acid and sulphate are the main problems of alkali-activated paste, mortar and concrete. Based on these factors, alkali-activated mortar (AAM) binders incorporating high-volume palm oil fuel ash (POFA), ground blast furnace slag (GBFS) and fly ash (FA) were designed to enhance their durability performance against aggressive environments. The compressive strength, drying shrinkage, loss in strength and weight, as well as the microstructures of these AAMs were evaluated after exposure to acid and sulphate solutions. Mortars made with a high volume of POFA showed an improved durability performance with reduced drying shrinkage compared to the control sample. Regarding the resistance against aggressive environments, AAMs with POFA content increasing from 0 to 70% showed a reduced loss in strength from 35 to 9% when subjected to an acid attack, respectively. Additionally, the results indicated that high-volume POFA binders with an increasing FA content as a GBFS replacement could improve the performance of the proposed mortars in terms of durability. It is asserted that POFA can significantly contribute to the cement-free industry, thus mitigating environmental problems such as carbon dioxide emission and landfill risks. Furthermore, the use of POFA can increase the lifespan of construction materials through a reduction in the deterioration resulting from shrinkage problems and aggressive environment attacks.


2015 ◽  
Vol 815 ◽  
pp. 29-33 ◽  
Author(s):  
Liyana Ahmad Sofri ◽  
Mohd Zulham Affandi Mohd Zahid ◽  
Nur Fitriah Isa ◽  
Muhammad Azizi Azizan ◽  
Muhammad Munsif Ahmad ◽  
...  

Palm Oil Fuel Ash (POFA) is one of the solid waste in Malaysia and had trouble with the ash removal. Therefore, the use of waste oil palm ash can overcome the problem of solid waste. POFA is a pozzolanic material and it can act as a replacement of cement (OPC) to produce concrete with higher strength and low cost. POFA quality will increase as the range made up to a medium level of fineness in the size of 50 microns. POFA used to replace OPC is 0%, 10%, 30% and 50% by weight percent of OPC. POFA concrete compressive strength will be tested after a curing process that concrete age of 7 days and 28 days. POFA concrete density is also tested and compared with OPC concrete. Results showed that compressive strength POFA lower than normal concrete. On the other hand, the replacement of cement by 10% POFA shows a record high in compressive strength compared with other POFA mixing at the age of 7 days and 28 days. Fineness pozzolanic POFA is the best material and can be used as a cement replacement alternative.


2019 ◽  
Vol 44 (37) ◽  
pp. 20815-20825 ◽  
Author(s):  
Chi Cheng Chong ◽  
Nornasuha Abdullah ◽  
Syahida Nasuha Bukhari ◽  
Nurul Ainirazali ◽  
Lee Peng Teh ◽  
...  

2011 ◽  
Vol 8 (1) ◽  
pp. 333-339 ◽  
Author(s):  
Z. Chowdhury ◽  
S. M. Zain ◽  
A. K. Rashid

The low cost adsorbent palm oil fuel ash (POFA) derived from an agricultural waste material was investigated as a replacement of current expensive methods for treating wastewater contaminated by Pb(II) cation. Adsorption studies were carried out to delineate the effect of contact time, temperature, pH and initial metal ion concentration. The experimental data followed pseudo second order kinetics which confirms chemisorptions. The values of Langmuir dimensionless constant, RLand Freundlich constant, 1/n were less than 1 representing favorable process for adsorption. Thermodynamic parameters such as ΔG°, ΔH°and ΔS°, related to Gibbs free energy, enthalpy and entropy were evaluated. It was concluded that, chemically treated palm oil fuel ash (POFA) can be used successfully for adsorption of Pb(II) from aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document