scholarly journals Reduction of NOx Emission of a Diesel Engine with a Multiple Injection Pump by SCR Catalytic Converter

Author(s):  
Vít Marek ◽  
Lukáš Tunka ◽  
Adam Polcar ◽  
Dušan Slimařík

This paper deals with reduction of NOx-emission of a diesel engine with multiple injection pump by SCR catalytic converter. Main aim of the measurement was the detection of SCR catalyst converter efficiency. Tests were realized at the Research and Development workplace of Zetor Tractor a.s. Used engine was equipped with a multiple injection pump with electromagnetic regulator of a fuel charge. During the experiment selective catalytic reduction and diesel particulate filter were used as an after treatment of harmful pollutants reduction. Testing cycle of the eight-point test was chosen and Non-Road Steady Cycle (NRSC) was maintained according to 97/68/EC directive. Results confirmed the dependencies between temperatures of SCR catalyst and exhaust gases and the volume of exhaust gases on efficiency of SCR catalyst. During the operation load of the engine, selective catalytic reduction reached efficiency over 90 %. Used after treatment system is suitable for reduction of harmful pollutants according to the Tier 4f norm.

Author(s):  
M. K. Yadav ◽  
A. K. Srivastava

The rising rate of pollution in urban areas has become a worldwide concern in recent years. Diesel engines are considered one of the largest contributors to environmental pollution caused by exhaust emissions, and they are responsible for several health problems as well. Diesel engines contain carbon monoxide, carbon dioxide, unburned hydrocarbons, and oxides of nitrogen. The reduction of Nitric oxides (NOx) emission from diesel engine exhaust is currently being researched by automotive manufacturers. After much research, selective catalytic reduction (SCR) technology was discovered to be effective in reducing nitrogen oxide emission from diesel engine exhaust. This paper is an attempt to explore the problems associated with the use of selective catalytic reduction (SCR) and compares selective catalytic reduction (SCR) with the latest technology named solid selective catalytic reduction (SSCR) for efficient reduction of NOx emission from the exhaust of diesel engines. The issue of contamination, malfunctioning, and freezing of diesel exhaust fluid (DEF) at low temperatures are the major problems associated with the application of SCR. It is observed that by controlling the quantity of ammonia slip, SSCR can give better performance in the reduction of NOx emission from the exhaust of diesel engines.


2017 ◽  
Vol 19 (7) ◽  
pp. 5333-5342 ◽  
Author(s):  
Shu-xian Wang ◽  
Rui-tang Guo ◽  
Wei-guo Pan ◽  
Ming-yuan Li ◽  
Peng Sun ◽  
...  

It was well recognized that Pb had a poisoning effect on a SCR catalyst. In this study, the deactivation mechanism of Pb on the Ce/TiO2 catalyst was investigated based on the characterization results of TPD and in situ DRIFT studies.


2014 ◽  
Vol 541-542 ◽  
pp. 747-751
Author(s):  
Tao Qiu ◽  
Xu Chu Li ◽  
Jing Peng ◽  
Yan Lei ◽  
Guang Zhao Yue

Aimed at the diesel engine, a selective catalytic reduction (SCR) system was developed. In this system, the urea pump is integrated with a urea tank, air and urea mix in the injector, catalyst convertor is based on vanadium. Combining with a self-developed control unit, the urea-SCR system was tested on the engine bench. The ESC experiment results indicate that the NOx emission can be reduced effectively which meets the China stage IV regulation.


ACS Catalysis ◽  
2014 ◽  
Vol 4 (8) ◽  
pp. 2479-2491 ◽  
Author(s):  
Hesham A. Habib ◽  
Ralf Basner ◽  
Ronny Brandenburg ◽  
Udo Armbruster ◽  
Andreas Martin

2021 ◽  
Author(s):  
Yulong Shan ◽  
Jinpeng Du ◽  
Yan Zhang ◽  
Wenpo Shan ◽  
Xiaoyan Shi ◽  
...  

Abstract Zeolites, as efficient and stable catalysts, are widely used in the environmental catalysis field. Typically, Cu-SSZ-13 with small-pore structure shows excellent catalytic activity for selective catalytic reduction of NOx with ammonia (NH3-SCR) as well as high hydrothermal stability. This review summarizes major advances in Cu-SSZ-13 applied to the NH3-SCR reaction, including the state of copper species, standard and fast SCR reaction mechanism, hydrothermal deactivation mechanism, poisoning resistance, and synthetic methodology. The review gives a valuable summary of new insights on the matching between SCR catalyst design principles and the characteristics of Cu2+-exchanged zeolitic catalysts, highlighting the significant opportunity presented by zeolite-based catalysts. Principles for designing zeolites with excellent NH3-SCR performance and hydrothermal stability are proposed. On the basis of these principles, more hydrothermally stable Cu-AEI and Cu-LTA zeolites are elaborated as well as other alternative zeolites applied to NH3-SCR. Finally, we call attention to the challenges facing Cu-based small-pore zeolites that still need to be addressed.


2003 ◽  
Author(s):  
Michael D. Kass ◽  
John F. Thomas ◽  
Samuel A. Lewis ◽  
John M. Storey ◽  
Norberto Domingo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document