catalytic converter
Recently Published Documents


TOTAL DOCUMENTS

935
(FIVE YEARS 179)

H-INDEX

34
(FIVE YEARS 4)

2022 ◽  
pp. 223-253
Author(s):  
G. Sathish Sharma ◽  
M. Sugavaneswaran ◽  
R. Prakash

JTAM ROTARY ◽  
2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Dias Ahmad Fajri ◽  
Abdul Ghofur

Catalytic Converter adalah pengubah (modifier) yang menggunakan media yang memiliki katalis, dimana media tersebut diharapkan dapat membantu atau mempercepat proses perubahan zat (reaksi kimia) sehingga gas seperti CO dapat dioksidasi menjadi CO2, media katalis kimia pada suhu tertentu, tanpa perubahan atau penggunaan oleh reaksi itu sendiri. Catalytic converter berbahan arang kayu ulin untuk emisi gas buang dan konsumsi bahan bakar. Jenis penelitian ini adalah penelitian eksperimen. Pengujian yang dilakukan pada penelitian ini ada 2 yaitu knalpot tanpa catalytic converter dan knalpot dengan catalytic converter berbahan arang kayu ulin dengan variasi rpm 1500, 2500, 3500. Pengujian emisi gas buang menggunakan alat yang disebut gas analyzer. Berdasarkan hasil penelitian dapat disimpulkan bahwa catalytic converter berbahan arang kayu ulin dengan diameter lubang 20 mm mampu mereduksi emisi CO dengan reduksi sebesar 52,23%, dan emisi HC lubang berdiameter 20 mm dengan jumlah 85,63. Catalytic Converter is a converter (modifier)that uses media that has a catalyst, where the media is expected to help or accelerate the process of changing substances (chemical reactions) so that gases such as CO can be oxidized to CO2, chemical catalyst media at a certain temperature, without change or use by the reaction itself. Catalytic converters made from ironwood charcoal to exhaust emissions and fuel consumption. This type of research is experimental research. There are 2 tests of this research, namely exhaust without catalytic converter and exhaust with catalytic converter made from ironwood charcoal with variations in rpm 1500, 2500, 3500. Examination of exhaust emissions using a device called a gas analyzer. Based on the results of the study it can be concluded that catalytic converters made from ironwood charcoal with a hole diameter of 20 mm were able to reduce CO emissions with a reduction of 52.23%, and HC emissions of a hole diameter of 20 mm with an amount of 85.63,


Author(s):  
Dafit Feriyanto ◽  
◽  
Samir Sani Abdul Malik ◽  
Muhamad Fitri ◽  
Imam Hidayat ◽  
...  

Catalytic Converter (CATCO) material become an interesting field to investigate due to the common CATCO material being ceramic material that has high brittleness than metallic materials. Therefore, this research investigates the FeCrAl metallic material as CATCO substrate that is coated by γ-Al2O3 as a washcoat, Nickel Oxide (NiO) as a catalyst. The coating analysis was performed by ultrasonic using a frequency of 35 kHz and various ultrasonic times of 1, 1.5, 2, 2.5, and 3 hours and electroplating technique by sulphamate types electrolyte using variation times of 15, 30, 45, 60, and 75 minutes, a current density of 8 A/dm2. The result shows that the raw material was consists of Fe, Cr and Al with Fe element was dominated for 74.13wt%. Coated sample by ultrasonic consists of Fe, Cr, Al, O, and C elements due to FeCrAl substrate was deposited by γ-Al2O3 powder and by electroplating technique consists of Fe, Cr, Al, O, C, Ni and Na elements due to NiO deposition as catalyst material. TGA analysis observed that the highest mass change was observed by raw material 23.39 mg and UB+EL 30 min samples for lowest mass change of 2.85 mg with a point of the reaction is 0.07 mg/min may be caused by a protective oxide layer that developed during the coating process. Therefore, the coated metallic CATCO has a promising prospect to replace the ceramic CATCO due to high thermal stability by protecting layer and low mass change.


Author(s):  
T. Dara Sai Pradeep ◽  
Micha Premkumar ◽  
C. Krishna Kishore ◽  
P. Mahesh ◽  
Kollu Surya Kiran ◽  
...  

The exhaust manifold of multi cylinder IC engine is kept in between the engine block and the catalytic converter. So the exhaust manifold is exposed to very high temperature and care should be taken at the critical zone during the design stage. At several critical zones of the exhaust manifold, large compressive deformations are generated at elevated temperatures and tensile stresses remain at cold conditions. The thermal analysis will help in estimating the deformations and stress concentrations due to thermal loads. Therefore, the main aim of this study is to perform thermal analysis and conjugate heat flow analysis of an exhaust manifold of a multi-cylinder engine. The 3D model is generated using SolidWorks and analysis is carried out using Ansys workbench. Materials like grey C.I., aluminium nitride, silicon nitride, and stainless steel are used in this analysis. The results of total heat flux, directional heat flux and temperature distribution were compared. Silicon nitride material is suggested to be the suitable material for engine exhaust manifolds based on the material mechanical properties and thermal distribution-related thermal stress developed on the exhaust manifold.


Author(s):  
Dafit Feriyanto ◽  
S.S. Abdulmalik ◽  
Hadi Pranoto ◽  
Supaat Zakaria

The most commonly used method for protecting atmospherically exposed steel against corrosion, is the application of protective organic coating systems. It is widely recognized that the stability of the coating-substrate interface is related to the interfacial adhesion forces and electrochemical properties of this region. This study aim to develop fine surface roughness by ultrasonic and electroplating coating methods that applied for FeCrAl catalytic converter. This method consists of thwo methods which are ultrasonic bath that carried out by frequency of 35 kHz and various ultrasonic times of 1, 1.5, 2, 2.5 and 3 hours is imposed and the electroplating was conducted for several variation times of 15, 30, 45, 60 and 75 minutes, current density of 8 A/dm2. The result shows that the surface roughness of UB samples in between 0.11 to 0.21 µm, UBdEL samples of 0.81 to 2.17 µm, UB+EL samples of 0.64 to 1.63 µm and EL samples of 0.69 to 1.11 µm. The finest surface of each techniques are located at UB 1.5 h, UBdEL 45 minutes, UB 1.5 h+EL 30 minutes and UB 30 minutes. That data is supported by coating thickness of coated FeCrAl substrate where UB samples in between 2 -2.8 µm, UBdEL samples of 4.1 to 5 µm, UB+EL samples of 9.1 to 12 µm and EL samples of 6.2 to 11.3 µm.


2021 ◽  
Author(s):  
Xun Liu ◽  
Shou-Jie Xu ◽  
Chu-Qi Su ◽  
Xiao-Hong Yuan ◽  
Yi-Ping Wang

2021 ◽  
Vol 1206 (1) ◽  
pp. 012009
Author(s):  
Mukesh Thakur ◽  
Rohan Senanayake

Abstract Air pollution control has become the area of interest due to the ever increasing air pollution problem from the automobiles. Several researchers have conducted several experiments to control the air pollution concentration from automobiles by using several techniques but this area has a wide scope for improvement. This research paper is based on an experiment conducted on a Four Stroke Spark Ignition engine test rig using an Innovative catalytic converter which was coated with nano-particles to estimate its effectiveness in air pollution control. The results of the experiment conducted clearly indicate that the Innovative design of catalytic converter is effective in air pollution control from automobiles.


Sign in / Sign up

Export Citation Format

Share Document