small pore
Recently Published Documents


TOTAL DOCUMENTS

566
(FIVE YEARS 189)

H-INDEX

45
(FIVE YEARS 9)

Author(s):  
Chuan-Ming Wang ◽  
Guang Yang ◽  
Yi Li ◽  
Yujue Du ◽  
Yangdong Wang ◽  
...  

Small-pore zeolites with 8-rings are pivotal catalytic materials to produce light olefins from non-petroleum resources employing methanol-to-olefins or syngas-to-olefins processes. The constraints of cage openings on the diffusion of light...


2021 ◽  
Vol 12 (1) ◽  
pp. 374
Author(s):  
Wenfang Zhao ◽  
Xiaowu Tang ◽  
Keyi Li ◽  
Jiaxin Liang ◽  
Weikang Lin ◽  
...  

Characteristic pore-opening size O95 or O90 has been widely used in the filter design of woven geotextiles. These manufactured products have different pore size proportions of large pore diameters, medium pore diameters, and small pore diameters, respectively. Therefore, uncertainties still exist regarding the prediction of geotextile pore diameter variations under the uniaxial tensile strain. This paper investigates the variations in five characteristic pore-opening sizes O95, O80, O50, O30, and O10, with uniaxial tensile strain by using the image analysis method. The large pore diameters, medium pore diameters, and small pore diameters show different variation behaviors as the uniaxial tensile strain increases. Fifteen specific pores are selected and then their pore diameter variations are monitored under each tensile strain of 1%. The colorful pore size distribution diagram is a visual way to identify the variation of pores arranged in the tension direction (warp direction) and the direction perpendicular to tensile loads (weft direction). The various pore diameters are proved to agree well with the bell-shaped Gaussian distribution. The results exhibit an accurate prediction of the variation in large pore sizes, medium pore sizes, and small pore sizes, respectively, for all tested woven geotextiles with uniaxial tensile strain.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 113
Author(s):  
Erika Nascimben Santos ◽  
Ákos Fazekas ◽  
Cecilia Hodúr ◽  
Zsuzsanna László ◽  
Sándor Beszédes ◽  
...  

Non-solvent induced phase-inversion is one of the most used methods to fabricate membranes. However, there are only a few studies supported by statistical analysis on how the different fabrication conditions affect the formation and performance of membranes. In this paper, a central composite design was employed to analyze how different fabrication conditions affect the pure water flux, pore size, and photocatalytic activity of polyvinylidene fluoride (PVDF) membranes. Polyvinylpyrrolidone (PVP) was used to form pores, and titanium dioxide (TiO2) to ensure the photocatalytic activity of the membranes. The studied bath temperatures (15 to 25 °C) and evaporation times (0 to 60 s) did not significantly affect the pore size and pure water flux of the membranes. The concentration of PVDF (12.5 to 17.5%) affected the viscosity, formation capability, and pore sizes. PVDF at high concentrations resulted in membranes with small pore sizes. PVP affected the pore size and should be used to a limited extent to avoid possible hole formation. TiO2 contents were responsible for the decolorization of a methyl orange solution (10−5 M) up to 90% over the period studied (30 h). A higher content of TiO2 did not increase the decolorization rate. Acidic conditions increased the photocatalytic activity of the TiO2-membranes.


2021 ◽  
Author(s):  
Mohammad R. Momeni ◽  
Dil K. Limbu ◽  
Sara Abdelhamid ◽  
Shaina Pearson ◽  
Farnaz A. Shakib

Most of chemistry in nanoporous materials with small pore sizes and windows is known to occur on the surface which is in immediate contact with substrate/solvent, rather than inside pores and channels. Here, we report the results of our comprehensive atomistic molecular dynamics simulations on deciphering the intermolecular hydrogen bond network of water on outer surface of a nanoparticle model of ZIF-8 vs. inner surfaces of its pristine crystalline bulk model. Using a finite ~5.1 nm nanoparticle model with edges containing under--coordinated Zn2+ metal sites we show that water exposed to the surface of the nanoparticle exhibits both interfacial and bulk-like characters. Furthermore, we illustrate that as water content increases larger droplets are formed with water molecules starting to diffuse into the nanopores. While the confined water in the crystalline bulk simulations is pushed to the vacant pores due to hydrophobic inner surfaces, the outer surface water molecules form chemical bonds with under--coordinated Zn2+ metal sites which act as nucleation sites for the water droplets to form and hence making the surface hydrophilic. By adapting a similar mechanism to the dangling linker defect formation mechanism, we probe the tendency of the outer surface of ZIF-8 nanoparticles to water attack and hydrolysis. Results presented in this work are useful in designing more robust materials for applications in humid environments.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1368
Author(s):  
Lihong Zhou ◽  
Yong Li ◽  
Fengming Jin ◽  
Lixin Fu ◽  
Xiugang Pu ◽  
...  

Carboniferous-Permian petroleum resources in the Huanghua Depression of the Bohai Bay Basin, a super petroleum basin, are important exploration successor targets. The reservoir sedimentary environment of coal measures in the Upper Paleozoic buried hills is variable, and the structural evolution process is complicated, which restricts the optimization of targeting sections. Using the analysis and testing results of logging, thin section, porosity, mercury injection, hydrochemistry, and basin simulation, this study revealed the formation mechanism differences of tight sandstones in the Upper Paleozoic period in different buried hills. The results show that the sandstones are mainly feldspathic sandstone, lithic arkose, feldspathic lithic sandstone, and feldspathic lithic quartz sandstone. The quartz content varies between 25% and 70%, averaging 41%. Feldspar and debris are generally high, averaging 31% and 28%, respectively. Secondary dissolution pores are the main reservoir spaces, with 45% of the tested samples showing porosity of 5–10%, and 15% being lower than 5%. The pore radium is generally lower than 100 nm, and the sandstones are determined as small pore with fine throat and medium pore with fine throat sandstones by mercury saturation results. Frequent changing sedimentary environments and complex diagenetic transformation processes both contribute to the reservoir property differences. The former determines the original pore space, and the latter determines whether they can be used as effective reservoirs by controlling the diagenetic sequences. Combining tectonic movement background and different fluid history, the different formation mechanisms of high-porosity reservoirs are recognized, which are atmospheric leaching dominated (Koucun buried hills), atmospheric water and organic acid co-controlled (Wangguantun and Wumaying buried hills), and organic acid dominated (Nandagang buried hills) influences. The results can be beneficial for tight gas exploration and development in coal measures inside clastic buried hills in the Bohai Bay Basin.


2021 ◽  
Author(s):  
Yulong Shan ◽  
Guangzhi He ◽  
Jinpeng Du ◽  
Yu Sun ◽  
Zhongqi Liu ◽  
...  

Abstract Commercial Cu-exchanged small-pore SSZ-13 (Cu-SSZ-13) zeolite catalysts are highly active for the selective catalytic reduction (SCR) of NOx with NH3, but distinct from other catalyst systems, their activity is unexpectedly inhibited in the presence of NO2. Here, we combined kinetic experiments, in-situ/operando X-ray absorption spectroscopy, and density functional theory (DFT) calculations to obtain direct evidence that under reaction conditions, strong oxidation by NO2 forces Cu ions to exist mainly as fixed framework Cu2+ species (fw-Cu2+), which impede the formation of dynamic binuclear Cu+ species that serve as the main active sites for the standard SCR (SSCR) reaction. As a result, the SSCR reaction is significantly inhibited by NO2 in the zeolite system, and the NO2-involved SCR reaction occurs with an energy barrier higher than that of the SSCR reaction on dynamic binuclear sites. Moreover, the NO2-involved SCR reaction tends to occur at the Brønsted acid sites (BAS) rather than the fw-Cu2+ sites. This work clearly explains the strikingly distinctive selective catalytic behavior in the zeolite system.


2021 ◽  
Vol 118 (48) ◽  
pp. e2109176118
Author(s):  
Yangminghao Liu ◽  
Daniel Patko ◽  
Ilonka Engelhardt ◽  
Timothy S. George ◽  
Nicola R. Stanley-Wall ◽  
...  

Our understanding of plant–microbe interactions in soil is limited by the difficulty of observing processes at the microscopic scale throughout plants’ large volume of influence. Here, we present the development of three-dimensional live microscopy for resolving plant–microbe interactions across the environment of an entire seedling growing in a transparent soil in tailor-made mesocosms, maintaining physical conditions for the culture of both plants and microorganisms. A tailor-made, dual-illumination light sheet system acquired photons scattered from the plant while fluorescence emissions were simultaneously captured from transparent soil particles and labeled microorganisms, allowing the generation of quantitative data on samples ∼3,600 mm3 in size, with as good as 5 µm resolution at a rate of up to one scan every 30 min. The system tracked the movement of Bacillus subtilis populations in the rhizosphere of lettuce plants in real time, revealing previously unseen patterns of activity. Motile bacteria favored small pore spaces over the surface of soil particles, colonizing the root in a pulsatile manner. Migrations appeared to be directed toward the root cap, the point of “first contact,” before the subsequent colonization of mature epidermis cells. Our findings show that microscopes dedicated to live environmental studies present an invaluable tool to understand plant–microbe interactions.


Sign in / Sign up

Export Citation Format

Share Document