scholarly journals Effect of Shift in Speed Turning on Machined Surface Quality

Author(s):  
Pavel Polák ◽  
Petr Dostál ◽  
Katarína Kollárová

This article describes the evaluation of machined material roughness in speed turning on a machining centre Doosan Puma 700 LY. The machined surface of semi-finished products from steel 14 260 was compared at selected cutting conditions. A half of compared samples from steel 14 260 was in the original, thermally untreated condition (mild steel), and the second half of samples was thermally treated (hardened steel, with a hardness of samples 50 HRC). The experiment focused on turning the selected samples in order to evaluate the roughness of machined surfaces. Cutting tool shift was variable during individual measurements. This experiment contributes to a quick orientation in the given issue and points out to optimisation of cutting conditions.

Author(s):  
Tao Chen ◽  
Weijie Gao ◽  
Guangyue Wang ◽  
Xianli Liu

Torus cutters are increasingly used in machining high-hardness materials because of high processing efficiency. However, due to the large hardness variation in assembled hardened steel workpiece, the tool wear occurs easily in machining process. This severely affects the machined surface quality. Here, we conduct a research on the tool wear and the machined surface quality in milling assembled hardened steel mold with a torus cutter. The experimental results show the abrasive wear mechanism dominates the initial tool wear stage of the torus cutter. As the tool wear intensifies, the adhesive wear gradually occurs due to the effect of alternating stress and impact load. Thus, the mixing effect of the abrasive and adhesive wears further accelerates tool wear, resulting in occurrence of obvious crater wear band on the rake face and coating tearing area on the flank face. Finally, the cutter is damaged by the fatigue wear mechanism, reducing seriously the cutting performance. With increase of flank wear, moreover, there are increasingly obvious differences in both the surface morphology and the cutting force at the two sides of the joint seam of the assembled hardened steel parts, including larger height difference at the two sides of the joint seam and sudden change of cutting force, as a result, leading to decreasing cutting stability and deteriorating seriously machined surface quality.


Author(s):  
Lei Li ◽  
Stuart A. Collins ◽  
Allen Y. Yi

The single point diamond turning process has been used extensively for direct optical surface fabrication. However, the diamond machined surfaces have characteristic periodic tool marks, which contribute to reduced optical performance such as scattering and distortion. In this paper, studies of the characteristics of diamond machined surface and scattering from the diamond machined surfaces are presented. Four different parameters, the first order optical diffraction, the zero order reflection, the surface roughness, and the residual tool mark depth, are used as indicators for the machined surface quality. Four sets of tests are presented showing the relationship between machined surface quality and machining conditions such as spindle speed, feedrate, and machining process. Finally, an empirical model is given based on the measurements.


2012 ◽  
Vol 500 ◽  
pp. 82-88 ◽  
Author(s):  
Cai Xu Yue ◽  
Xian Li Liu ◽  
Da Wei Sun ◽  
Ming Yang Wu

For its good processing flexible, economic and environmental protection performance, hardened steel GCr15 is used widely in car and energy industry. Although surface quality in machining process is not controlled well, that restricts application of hardened steel GCr15 extensive to a certain degree. Therefore, this study revealed the effect of cutting parameters on surface roughness. Also influence of cutting conditions on surface morphology and organization generation mechanism of subsurface were stuied for high-speed cutting hardened steel GCr15. Appear reasons of plastic side flow on surface was researched. Also, effect of tool wear on surface quality was studied as well. The research results provided theoretical basis for rational choice for high speed hardened steel cutting process.


2016 ◽  
Vol 836-837 ◽  
pp. 29-35
Author(s):  
Pavel Zeman ◽  
Petr Kolar ◽  
Petr Masek

Machining of fibre-reinforced thermosets is becoming a very popular technology today. Nevertheless, machinability of these materials is rather different from conventional materials such as metals since hard and abrasive fibres are combined with relatively soft resin with low glass transition temperature. Special attention has to be given to workpiece quality because delamination and burning of machined surface can occur. An experimental investigation into machinability of a polymeric and cellulose fibre-reinforced resin material was carried out. Milling operations were inspected with respect to process temperature, cutting forces and machined surface quality. The effect of cutting conditions on the mentioned aspects was determined. Standard and tailored cutting tools were used in the investigation. It was observed that surface quality is strongly dependent on tool geometry, milling strategy, fibre orientation and feed. On the other hand, cutting forces are relatively low and dependent on tool geometry and feed. The modified cutting tool with more positive tool geometry showed better results compared to the conventional one.


2016 ◽  
Vol 836-837 ◽  
pp. 155-160 ◽  
Author(s):  
Si Qi Liu ◽  
Yan Chen ◽  
Yu Can Fu ◽  
An Dong Hu

AFRP(Aramid Fiber Reinforced Plastics) is widely used in the aerospace and automotive while there are many problems in machining AFRP such as furry, delamination, burns and so on. Milling experiments of AFRP have been conducted to study the influence of different helix angle (0°, 30°, 60°) and cutting tools (traditional end mill, multiple flute end mill and compression end mill) on cutting force and machined surface quality. The results indicated that the cutting force has been reduced and the surface quality has been improved with the increase of helix angle. The cutting tool structure can make greater influence on machined surface quality than the cutting parameters. A cutting tool with the structure of multiple flute or herringbone cutting edge could reduce the axial cutting force. However the cutting force is too small to cut off fibers when using a multiple flute end mill. A good processing surface can be achieved while cutting with a compression end mill or a tool with big helix angle.


Micromachines ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 265 ◽  
Author(s):  
Pengyue Zhao ◽  
Qi Zhang ◽  
Yongbo Guo ◽  
Huan Liu ◽  
Zongquan Deng

Nanoparticle (NP), as a kind of hard-to-machine component in nanofabrication processes, dramatically affects the machined surface quality in nano-cutting. However, the surface/subsurface generation and the plastic deformation mechanisms of the workpiece still remain elusive. Here, the nano-cutting of a single-crystalline copper workpiece with a single spherical embedded nanoparticle is explored using molecular dynamics (MD) simulations. Four kinds of surface/subsurface cases of nanoparticle configuration are revealed, including being removed from the workpiece surface, moving as a part of the cutting tool, being pressed into the workpiece surface, and not interacting with the cutting tool, corresponding to four kinds of relative depth ranges between the center of the nanoparticle and the cutting tool. Significantly different plastic deformation mechanisms and machined surface qualities of the machined workpiece are also observed, suggesting that the machined surface quality could be improved by adjusting the cutting depth, which results in a change of the relative depth. In addition, the nanoparticle also significantly affects the processing forces in nano-cutting, especially when the cutting tool strongly interacts with the nanoparticle edge.


Author(s):  
Sergey A. Voronov ◽  
Igor A. Kiselev

The vibrations inevitably occur while milling of the details with insufficient rigidity like the turbine blades for engines and various propulsion systems. This effect is undesirable as it decreases accuracy and the machined surface quality. The vibrations suppression is realized by applying additional damping or by choosing cutting conditions ensuring the process stability. In general the problem is solved by the determination of the process stability lobes. This criterion assumes that process is stable if the regenerative vibrations of tool or workpiece are damped. The additional criterion is discussed in the paper — the roughness of the machined surface. For this purpose authors elaborated the algorithm of the numerical simulation of milling process, considering the dynamics of tool and workpiece and applying the algorithm of machined surface geometrical modeling that takes into account the delay mechanism inherent to the process. The numerical solution of the simplified model in the given paper is considered. The Poincare’s maps of the vibration amplitudes, the machined surface errors, and the cutting force magnitudes depending on cutting conditions are presented. Authors conclude, that in general the vibration stability while milling process is not the absolute quality criterion. The combination of the developed criteria is introduced.


2020 ◽  
Vol 70 (3) ◽  
pp. 299-305
Author(s):  
Atul Dev ◽  
Smriti Tandon ◽  
Pankaj Kumar ◽  
Anup Dutt

Surface quality is one of the major concerns in any machining process. To achieve the higher surface finish, mostly concentrated on machining parameter optimisation. This study has been carried out to study the effect of coating and polishing of flute surface of the solid carbide (WC-Co) endmill cutters on machined surface quality obtained during dry machining of Aluminium alloy 24345WP. Experiments were conducted on Aluminum workpieces with Ø6 mm 2 flute end- mill cutter with and without coating/polishing and their effect on surface quality studied for linear as well as areal surface roughness parameters using white light interferometery. The study concludes that polished flute tool, despite their non-sharp cutting edges, gives considerably better surface finish due to its lowering of chip tool friction. This was also supported by the results obtained from scanning electron microscopy of the cutting tool edge as well as optical microscopy of the obtained machined surface.


Sign in / Sign up

Export Citation Format

Share Document