machined surface quality
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 30)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  

Abstract This paper presents an experimental study of abrasive waterjet turning of an extrusion aluminum alloy (AlMg0,7Si). The aim of the paper is to determine differences of two methods from the point of view of machined surface quality and the depth of penetration, i.e., the diameter of the parts after the turning process. During the experiments, the traverse speed of the cutting head and the rotation of the turned parts were changed, other parameters, like pressure of the water, abrasive mass flow rate were kept constant. Diameter and some surface roughness parameters of the test parts were measured after the machining. On the base of experimental results, advantages, and disadvantages of two methods are explained in the paper.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5943
Author(s):  
Arminder Singh Walia ◽  
Vineet Srivastava ◽  
Mayank Garg ◽  
Nalin Somani ◽  
Nitin Kumar Gupta ◽  
...  

In electrical discharge machining (EDM), the machined surface quality can be affected by the excessive temperature generation during the machining process. To achieve a longer life of the finished part, the machined surface quality plays a key role in maintaining its overall integrity. Surface roughness is an important quality evaluation of a material’s surface that has considerable influence on mechanical performance of the material. Herein, a sintered cermet tooltip with 75% copper and 25% titanium carbide was used as tool electrode for processing H13 steel. The experiments have been performed to investigate the effects of EDM parameters on the machined surface roughness. The findings show that, as the pulse current, pulse length, and pulse interval are increased, the surface roughness tends to rise. The most significant determinant for surface roughness was found to be pulse current. A semi-empirical surface roughness model was created using the characteristics of the EDM technique. Buckingham’s theorem was used to develop a semi-empirical surface roughness prediction model. The semi-empirical model’s predictions were in good agreement with the experimental studies, and the built empirical model based on physical features of the cermet tooltip was tested using dimensional analysis.


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1110
Author(s):  
Menghua Zhou ◽  
Jianpeng Wang ◽  
Guoqing Zhang

In the field of single-point diamond turning (SPDT), machining ferrous metal is an important research topic with promising application. For SPDT of ferrous metal, the influence of lubricant on the workpiece surface morphology remains to be studied. In this study, three lubricant machining environments were selected to carry out specific control experiments. The machined surface morphology and cutting force in different lubricant machining environments were analyzed. The experiment results showed that the lubricant environment will have significant impacts on the quality of the machined surface morphology of ferrous metal. In the environment of minimum quantity lubrication machining (MQLM-oil), better machined surface quality can be obtained than that in ordinary dry machining (ODM) and high-pressure gas machining (HGM). Furthermore, the cutting force captured in the ODM and HGM environment increased with the increase of the cutting depth, while the cutting force in the MQLM-oil environment remained almost unchanged. That indicates MQLM-oil can suppress the formation of hard particles to improve the machining quality.


2021 ◽  
Vol 4 (1) ◽  
pp. 166-177
Author(s):  
Magdalena Palacz ◽  
Tatiana N. Ivanova ◽  
Alexander M. Kozlov ◽  
Wojciech Kaniak

Abstract In current conditions, great attention is paid to the quality of parts, which is in many ways determined by finishing operations of mechanical treatment, with surface grinding being the most widespread. Grinding process efficiency, abrasive tool wear intensity, machined surface quality and other features of grinding process depend on properties of the environment, where the cutting process takes place. Forced changing of conditions of this environment is one of the ways to control and optimize the grinding process, which can be reached due to finding new technological decisions. One of the most promising directions to solve this problem is the process of face grinding with discontinuous grinding tool and supply of cooling fluid or air in the cutting zone directly. Carried analysis of features of face grinding has shown that heat density can be decreased by the usage by grooved wheels with vortex air cooling or by supply of cooling-lubricant technological fluid. Obtained dependences of temperature field of part surface during grinding establish the influence of the length of working shoulders and grooves, vortex tubes number, outflow rate, temperature and flow rate of cold vortex flow of air. These data provide conscious control over the process of discontinuous face grinding by changing wheel grain size and grinding speed.


2021 ◽  
Vol 11 (16) ◽  
pp. 7471
Author(s):  
Guanming Hou ◽  
Anhai Li

The machined surface quality, especially the micro-hardness of machined surface layers, is strongly correlated to the friction and wear characteristics of titanium alloy engineering parts. Therefore, to explore relationship of the local surface micro-hardness change in multistep machining and the surface wear resistance of the machined parts is urgently necessary. The machined surfaces were acquired through two-step (roughing and finishing) and three step (roughing, semi-finishing, and finishing) cylindrical turning experiments. The dry friction and wear tests were carried out by UMT-2 friction and wear tester on the multistep final machined surface along the feed direction. The surface wear microtopography and subsurface microstructure were observed and analyzed by scanning electron microscope. The micro-hardness variation in the local area of the finishing surface will cause the extension of unstable friction time stage while withstanding the cyclic and alternating contact stresses, and the soft–hard alternating area should be the sources of friction and wear defects, for instance cracks, peeling pits, fracture striations and even the wear fracture zone to crack propagation and peeling off. This will be of great significance to accurately control the machined surface quality and adaptively improve the surface wear resistance of titanium alloy components.


Author(s):  
Ting-Yu Chang ◽  
Jen-Yuan (James) Chang

Abstract Automatically monitoring finishing quality by computers can achieve efficient product quality management and can improve overall production efficiency. To be able to offer quantitative measures and to achieve this goal, this paper discusses and suggests the utilization of artificial intelligence (AI) technology to predict product finishing quality by use of signals such as vibrations captured by accelerometers generated during manufacturing. To reduce the cost of inspecting products one by one, a deep one-dimensional convolutional neural network (CNN) is proposed to predict machined surface quality. In this method, dense residual skip-connections are used to improve the complexity of the model to improve the accuracy of predicted values. With the adaptation of the pooling layer in the proposed model, it is observed that the number of parameters used in the model is greatly reduced. Not only the predicted accuracy is optimized with the proposed model, the parameters that need to be stored and the computation resource that is consumed in the inference stage are significantly reduced as well. Compared with methods reported in the literature, through calibrated experimental verifications, the proposed model used in this work can improve the prediction accuracy by 10 percent, without any additional signal preprocessing efforts. The work presented in this paper is thought to have engineering implications in quantifying machining quality in the machine tools industry.


Author(s):  
Yan Zhang ◽  
Hao Li ◽  
Xuda Qin ◽  
Jie liu ◽  
Zhuojie Hou

To fulfill the demands of higher precision, better quality, and more flexibility, the usage of high-performance industrial robots is rapidly increased in aerospace industry. Considering the anisotropic and inhomogeneous characteristics of composite materials, this study focuses mainly on dynamic response investigation of a newly designed hybrid robot (named as TriMule) in CFRP trimming process and its influence on the machined quality. First, combined with the cutting force characteristic, the vibration responses of tool center point (TCP) under the dynamic excitation were obtained. The influences of robotic TCP vibration on machined surface quality with different fiber orientations, including surface waviness, cavity, 3D surface roughness, and depth of affected zone, are first studied by comparing hybrid robot and machine tool. From experiment results, it can be concluded the proposed TCP vibration response model has sufficient prediction accuracy. Meanwhile, it is found that larger robotic vibration response is accompanied by higher surface waviness, bigger surface cavity, and greater affected zone. Results also showed that the fiber orientation and milling style are two essential factors that affect robot vibration and machining quality during CFRP trimming.


2021 ◽  
Vol 15 (1) ◽  
pp. 41-48
Author(s):  
Fumiya Muto ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
Tatsuya Furuki ◽  
Kiyofumi Inaba ◽  
...  

Currently, the demand for carbon fiber reinforced plastic (CFRP) has increased in various fields. However, there have been few studies investigating the machined surface quality, degradation in CFRP mechanical properties with machining temperature, or machining tool cost. In particular, the machining temperature is considered to affect the machined quality because the CFRP matrix is a resin. In this study, a cubic boron nitride (cBN) electroplated end mill was developed; this novel tool can switch between cutting and grinding without needing to change the tool. To observe the relationship between the amount of abrasive grain in contact with the CFRP and the occurrence of burrs, a grinding test was conducted with different clearance angles of the end mill and different abrasive grain sizes. The temperature during the grinding processes was measured, and the burrs were estimated after the grinding processes. From these results, the contact amount of the abrasive grit suitable for grinding was derived.


Sign in / Sign up

Export Citation Format

Share Document