cutting performance
Recently Published Documents


TOTAL DOCUMENTS

985
(FIVE YEARS 225)

H-INDEX

39
(FIVE YEARS 6)

2022 ◽  
Vol 122 ◽  
pp. 104366
Author(s):  
Biao Li ◽  
Bo Zhang ◽  
Mengmeng Hu ◽  
Bin Liu ◽  
Wenzheng Cao ◽  
...  

2022 ◽  
Author(s):  
Xin Jin ◽  
Guochao Zhao ◽  
Lijuan Zhao ◽  
Guocong Lin

Abstract The cutting head is the core working mechanism of the roadheader for coal-rock materials cutting. The efficient and high performance design of cutting head is the key to improve the road head digging and mining technology. In this paper, based on cutting head design theory and virtual prototype technology, we propose a computer-aided structure design and performance optimization method for cutting head. We compile the calculation code and realize the reading and storing of relevant data through Excel. In particular, to obtain more realistic cutting performance data of the cutting head, we construct a coupling model of cutting head cutting rock wall based on virtual prototype technology, and then establish a database matching structural parameters, working parameters, coal-rock properties and cutting performance through extensive simulations. Based on the method, we complete the design of EBZ220 roadheader cutting head. We show that our method can realize the fast and efficient design of cutting head, and the designed cutting head has good working performance.


2022 ◽  
Vol 14 (1) ◽  
pp. 168781402110704
Author(s):  
Rengiah Robinson Gnanadurai ◽  
Solomon Mesfin

In this work, an innovative nanocutting fluid, based on coconut oil was developed by dispersing silver nanoparticles (AgNPs) of size less than 50 nm. The tribological and physical properties of the prepared nanocutting fluid with different volumes of silver nanoparticles were studied. It was found that the addition of 4% by volume of nanoparticles enhanced the properties of the nanocutting fluid compared to the other concentrations studied, thus demonstrating its excellent tribological performance. The effect of the newly developed nanocutting fluid with 4% of silver nanoparticles on cutting performance was also investigated while machining AISI4340 steel with minimal fluid application. Results revealed that the cutting force, cutting temperature, and tool wear are reduced on an average by 22.6%, 12.6%, and 5.3% respectively. It was evident that efficient cooling and lubrication of nanocutting fluid dispersed with silver nanoparticles improved the cutting performance. The outcomes of this work can be considered as a development toward eco-friendly and sustainable machining.


2021 ◽  
Author(s):  
Hao Qu ◽  
Lin Zhang ◽  
Zhe Chen ◽  
Lei Zhang ◽  
Kyle Jiang ◽  
...  

Abstract In this study a pulsed magnetic treatment was attempted to improve the cutting performance of the TiAlSiN coated WC-12wt%Co cemented carbide end mills and the effects of the strength of the pulsed magnetic field on the cutting forces, the cutting vibrations, the tool wear, the machined surface roughness and mechanical properties were investigated. It is found that the cutting performances of the coated tools are successfully improved with a relatively lower cutting force and less wear area. The average resultant cutting force Fxyave decrease by 14.53% in the last machining process when the optimum processing parameters of 0.5T magnetic field is used, accompanying a maximum decrease of 46.8% in the cutting vibration. The maximum reductions of 57.65% and 25.4% in the flank wear and the average surface roughness of the workpiece are obtained respectively after the treatment. Both the hardness and toughness of the cemented carbides are slightly improved with the imposition of the field. The improvements in the cutting performance of the tool are attributed to the enhanced adhesion strength between the coating and matrix, which is caused by the increased compressive residual stress induced by the PMT.


2021 ◽  
Vol 67 (12) ◽  
pp. 649-665
Author(s):  
Zhiwen Wang ◽  
Qingliang Zeng ◽  
Zhenguo Lu ◽  
Lirong Wan ◽  
Xin Zhang ◽  
...  

The circular saw blade is widely applied in rock processing; its cutting performance significantly impacts rock processing. Therefore, the numerical simulation model of rock cutting with the flexible circular saw blade has been established to investigate the effects of cutting parameters on the stress and cutting force of circular saw blade, and the damage and stress of rock in the circular saw blade cutting into rock vertically at constant feed speed and rotation speed. The research results indicate that the stress of the saw blade and rock rises with the increase of feed speed and rotation speed of the saw blade. Furthermore, the rock damage and the cutting force of the circular saw blade increase with the increasing feed speed and decrease with increasing rotation speed. The circular saw blade cutting force, vertical force, and horizontal force increase with the rising distance between the double circular saw blade. However, the axial force decreases. The research results of cutting hard rock with the flexible circular saw blade can aid in the optimization of cutting parameters and improve cutting efficiency.


Author(s):  
Xu Wang ◽  
Valentin L. Popov ◽  
Zhanjiang Yu ◽  
Yiquan Li ◽  
Jinkai Xu ◽  
...  

AbstractPrecision machining of SiCp/Al composites is a challenge due to the existence of reinforcement phase in this material. This work focuses on the study of the textured tools’ cutting performance on SiCp/Al composite, as well as the comparison with non-textured tools. The results show that the micro-pit textured tool can reduce the cutting force by 5–13% and cutting length by 9–39%. Compared with non-textured tools, the cutting stability of the micro-pit textured tools is better. It is found that the surface roughness is the smallest (0.4 μm) when the texture spacing is 100 μm, and the residual stress can be minimized to around 15 MPa in the case of texture spacing 80 μm. In addition, the SiC particles with size of around 2–12 μm in the SiCp/Al composite may play a supporting role between the texture and the chips, which results in three-body friction, thereby reducing tool wear, sticking, and secondary cutting phenomenon. At the same time, some SiC particles enter into the micro-pit texture, so that the number of residual particles on the surface is reduced and the friction between the tool and the surface then decreases, which improves the surface roughness, and reduces the surface residual stress.


Sign in / Sign up

Export Citation Format

Share Document