scholarly journals An Abstract Simple Group of Order 25920

1900 ◽  
Vol s1-32 (1) ◽  
pp. 3-10
Author(s):  
L. E. Dickson
Keyword(s):  
Author(s):  
Saul D. Freedman

AbstractLet G be a non-abelian finite simple group. In addition, let $$\Delta _G$$ Δ G be the intersection graph of G, whose vertices are the proper non-trivial subgroups of G, with distinct subgroups joined by an edge if and only if they intersect non-trivially. We prove that the diameter of $$\Delta _G$$ Δ G has a tight upper bound of 5, thereby resolving a question posed by Shen (Czechoslov Math J 60(4):945–950, 2010). Furthermore, a diameter of 5 is achieved only by the baby monster group and certain unitary groups of odd prime dimension.


2014 ◽  
Vol 66 (5) ◽  
pp. 666-677
Author(s):  
A. Babai ◽  
B. Khosravi
Keyword(s):  

1981 ◽  
Vol 69 (2) ◽  
pp. 467-482 ◽  
Author(s):  
A.R Prince
Keyword(s):  

2003 ◽  
Vol 45 (2) ◽  
pp. 281-291 ◽  
Author(s):  
FRANCESCA DALLA VOLTA ◽  
ANDREA LUCCHINI ◽  
FIORENZA MORINI

2019 ◽  
Vol 357 (5) ◽  
pp. 401-412
Author(s):  
Faryad Ali ◽  
Mohammed Ali Faya Ibrahim ◽  
Andrew Woldar

2019 ◽  
Vol 12 (05) ◽  
pp. 1950081
Author(s):  
M. Jahandideh ◽  
R. Modabernia ◽  
S. Shokrolahi

Let [Formula: see text] be a non-abelian finite group and [Formula: see text] be the center of [Formula: see text]. The non-commuting graph, [Formula: see text], associated to [Formula: see text] is the graph whose vertex set is [Formula: see text] and two distinct vertices [Formula: see text] are adjacent if and only if [Formula: see text]. We conjecture that if [Formula: see text] is an almost simple group and [Formula: see text] is a non-abelian finite group such that [Formula: see text], then [Formula: see text]. Among other results, we prove that if [Formula: see text] is a certain almost simple group and [Formula: see text] is a non-abelian group with isomorphic non-commuting graphs, then [Formula: see text].


2008 ◽  
Vol 07 (06) ◽  
pp. 735-748 ◽  
Author(s):  
BEHROOZ KHOSRAVI

Let G be a finite group. The prime graph Γ(G) of G is defined as follows. The vertices of Γ(G) are the primes dividing the order of G and two distinct vertices p, q are joined by an edge if there is an element in G of order pq. It is proved that if p > 11 and p ≢ 1 (mod 12), then PSL(2,p) is uniquely determined by its prime graph. Also it is proved that if p > 7 is a prime number and Γ(G) = Γ(PSL(2,p2)), then G ≅ PSL(2,p2) or G ≅ PSL(2,p2).2, the non-split extension of PSL(2,p2) by ℤ2. In this paper as the main result we determine finite groups G such that Γ(G) = Γ(PSL(2,q)), where q = pk. As a consequence of our results we prove that if q = pk, k > 1 is odd and p is an odd prime number, then PSL(2,q) is uniquely determined by its prime graph and so these groups are characterizable by their prime graph.


Sign in / Sign up

Export Citation Format

Share Document