scholarly journals One-cycles on rationally connected varieties

2014 ◽  
Vol 150 (3) ◽  
pp. 396-408 ◽  
Author(s):  
Zhiyu Tian ◽  
Hong R. Zong

AbstractWe prove that every curve on a separably rationally connected variety is rationally equivalent to a (non-effective) integral sum of rational curves. That is, the Chow group of 1-cycles is generated by rational curves. Applying the same technique, we also show that the Chow group of 1-cycles on a separably rationally connected Fano complete intersection of index at least 2 is generated by lines. As a consequence, we give a positive answer to a question of Professor Totaro about integral Hodge classes on rationally connected 3-folds. And by a result of Professor Voisin, the general case is a consequence of the Tate conjecture for surfaces over finite fields.

2019 ◽  
Vol 21 (02) ◽  
pp. 1850011 ◽  
Author(s):  
Izzet Coskun ◽  
Eric Riedl

Let [Formula: see text] be a general Fano complete intersection of type [Formula: see text]. If at least one [Formula: see text] is greater than [Formula: see text], we show that [Formula: see text] contains rational curves of degree [Formula: see text] with balanced normal bundle. If all [Formula: see text] are [Formula: see text] and [Formula: see text], we show that [Formula: see text] contains rational curves of degree [Formula: see text] with balanced normal bundle. As an application, we prove a stronger version of the theorem of Tian [27], Chen and Zhu [4] that [Formula: see text] is separably rationally connected by exhibiting very free rational curves in [Formula: see text] of optimal degrees.


Author(s):  
Daniel Greb ◽  
Stefan Kebekus ◽  
Thomas Peternell

AbstractBased on a recent extension theorem for reflexive differential forms, that is, regular differential forms defined on the smooth locus of a possibly singular variety, we study the geometry and cohomology of sheaves of reflexive differentials.First, we generalise the extension theorem to holomorphic forms on locally algebraic complex spaces. We investigate the (non-)existence of reflexive pluri-differentials on singular rationally connected varieties, using a semistability analysis with respect to movable curve classes. The necessary foundational material concerning this stability notion is developed in an appendix to the paper. Moreover, we prove that Kodaira–Akizuki–Nakano vanishing for sheaves of reflexive differentials holds in certain extreme cases, and that it fails in general. Finally, topological and Hodge-theoretic properties of reflexive differentials are explored.


2020 ◽  
Vol 8 ◽  
Author(s):  
NATHAN CHEN ◽  
DAVID STAPLETON

We show that complex Fano hypersurfaces can have arbitrarily large degrees of irrationality. More precisely, if we fix a Fano index  $e$ , then the degree of irrationality of a very general complex Fano hypersurface of index  $e$ and dimension n is bounded from below by a constant times  $\sqrt{n}$ . To our knowledge, this gives the first examples of rationally connected varieties with degrees of irrationality greater than 3. The proof follows a degeneration to characteristic $p$ argument, which Kollár used to prove nonrationality of Fano hypersurfaces. Along the way, we show that in a family of varieties, the invariant ‘the minimal degree of a dominant rational map to a ruled variety’ can only drop on special fibers. As a consequence, we show that for certain low-dimensional families of varieties, the degree of irrationality also behaves well under specialization.


2002 ◽  
Vol 16 (1) ◽  
pp. 57-67 ◽  
Author(s):  
Tom Graber ◽  
Joe Harris ◽  
Jason Starr

2012 ◽  
Vol 22 (06) ◽  
pp. 1250049
Author(s):  
PAUL L. LARSEN

A curve on a projective variety is called movable if it belongs to an algebraic family of curves covering the variety. We consider when the cone of movable curves can be characterized without existence statements of covering families by studying the complete intersection cone on a family of blow-ups of complex projective space, including the moduli space of stable six-pointed rational curves and the permutohedral or Losev–Manin moduli space of four-pointed rational curves. Our main result is that the movable and complete intersection cones coincide for the toric members of this family, but differ for the non-toric member, the moduli space of six-pointed rational curves. The proof is via an algorithm that applies in greater generality. We also give an example of a projective toric threefold for which these two cones differ.


2013 ◽  
Vol 149 (6) ◽  
pp. 1041-1060 ◽  
Author(s):  
Roya Beheshti ◽  
N. Mohan Kumar

AbstractWe prove that the space of smooth rational curves of degree $e$ on a general complete intersection of multidegree $(d_1, \ldots , d_m)$ in $\mathbb {P}^n$ is irreducible of the expected dimension if $\sum _{i=1}^m d_i \lt (2n+m+1)/3$ and $n$ is sufficiently large. This generalizes a result of Harris, Roth and Starr [Rational curves on hypersurfaces of low degree, J. Reine Angew. Math. 571 (2004), 73–106], and is achieved by proving that the space of conics passing through any point of a general complete intersection has constant dimension if $\sum _{i=1}^m d_i$ is small compared to $n$.


Sign in / Sign up

Export Citation Format

Share Document