scholarly journals Optimal cycles in ultrametric dynamics and minimally ramified power series

2015 ◽  
Vol 152 (1) ◽  
pp. 187-222 ◽  
Author(s):  
Karl-Olof Lindahl ◽  
Juan Rivera-Letelier

We study ultrametric germs in one variable having an irrationally indifferent fixed point at the origin with a prescribed multiplier. We show that for many values of the multiplier, the cycles in the unit disk of the corresponding monic quadratic polynomial are ‘optimal’ in the following sense: they minimize the distance to the origin among cycles of the same minimal period of normalized germs having an irrationally indifferent fixed point at the origin with the same multiplier. We also give examples of multipliers for which the corresponding quadratic polynomial does not have optimal cycles. In those cases we exhibit a higher-degree polynomial such that all of its cycles are optimal. The proof of these results reveals a connection between the geometric location of periodic points of ultrametric power series and the lower ramification numbers of wildly ramified field automorphisms. We also give an extension of Sen’s theorem on wildly ramified field automorphisms, and a characterization of minimally ramified power series in terms of the iterative residue.

Author(s):  
V.V. Savchuk ◽  
◽  
M.V. Savchuk ◽  

The classical Schur criterion answers the question of whether a function f given by its power series f(x)=∑k=0∞CkZk is a Schur function that is, holomorphic in a unit disk D and such that supz∈D | f (z) | ≤ 1. Regarding this criterion, there are a large number of completed results devoted to its generalizations and various applications, but, as it seems to us, there is no criterion for a complete description of the Schur class in terms of coefficients of orthogonal series on arbitrary complete orthonormal systems. In this paper, we formulate such criterion for a formal orthogonal series with complex coefficients based on the Laguerre system.


2002 ◽  
Vol 109 (1) ◽  
pp. 80
Author(s):  
Kenneth Stolarsky ◽  
NSA Problems Group ◽  
O. P. Lossers
Keyword(s):  

1995 ◽  
Vol 05 (05) ◽  
pp. 1351-1355
Author(s):  
VLADIMIR FEDORENKO

We give a characterization of complex and simple interval maps and circle maps (in the sense of positive or zero topological entropy respectively), formulated in terms of the description of the dynamics of the map on its chain recurrent set. We also describe the behavior of complex maps on their periodic points.


1977 ◽  
Vol 17 (3) ◽  
pp. 375-389 ◽  
Author(s):  
Walter D. Neumann

It is shown how George D. Birkhoff's proof of the Poincaré Birkhoff theorem can be modified using ideas of H. Poincaré to give a rather precise lower bound on the number of components of the set of periodic points of the annulus. Some open problems related to this theorem are discussed.


2018 ◽  
Vol 28 (04) ◽  
pp. 1830011
Author(s):  
Mio Kobayashi ◽  
Tetsuya Yoshinaga

A one-dimensional Gaussian map defined by a Gaussian function describes a discrete-time dynamical system. Chaotic behavior can be observed in both Gaussian and logistic maps. This study analyzes the bifurcation structure corresponding to the fixed and periodic points of a coupled system comprising two Gaussian maps. The bifurcation structure of a mutually coupled Gaussian map is more complex than that of a mutually coupled logistic map. In a coupled Gaussian map, it was confirmed that after a stable fixed point or stable periodic points became unstable through the bifurcation, the points were able to recover their stability while the system parameters were changing. Moreover, we investigated a parameter region in which symmetric and asymmetric stable fixed points coexisted. Asymmetric unstable fixed point was generated by the [Formula: see text]-type branching of a symmetric stable fixed point. The stability of the unstable fixed point could be recovered through period-doubling and tangent bifurcations. Furthermore, a homoclinic structure related to the occurrence of chaotic behavior and invariant closed curves caused by two-periodic points was observed. The mutually coupled Gaussian map was merely a two-dimensional dynamical system; however, chaotic itinerancy, known to be a characteristic property associated with high-dimensional dynamical systems, was observed. The bifurcation structure of the mutually coupled Gaussian map clearly elucidates the mechanism of chaotic itinerancy generation in the two-dimensional coupled map. We discussed this mechanism by comparing the bifurcation structures of the Gaussian and logistic maps.


1991 ◽  
Vol 14 (2) ◽  
pp. 221-226 ◽  
Author(s):  
John Gill

A basic theorem of iteration theory (Henrici [6]) states thatfanalytic on the interior of the closed unit diskDand continuous onDwithInt(D)f(D)carries any pointz ϵ Dto the unique fixed pointα ϵ Doff. That is to say,fn(z)→αasn→∞. In [3] and [5] the author generalized this result in the following way: LetFn(z):=f1∘…∘fn(z). Thenfn→funiformly onDimpliesFn(z)λ, a constant, for allz ϵ D. This kind of compositional structure is a generalization of a limit periodic continued fraction. This paper focuses on the convergence behavior of more general inner compositional structuresf1∘…∘fn(z)where thefj's are analytic onInt(D)and continuous onDwithInt(D)fj(D), but essentially random. Applications include analytic functions defined by this process.


10.37236/6898 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Sen-Peng Eu ◽  
Tung-Shan Fu ◽  
Hsiang-Chun Hsu ◽  
Yu-Pei Huang

For a partition $\lambda$ of an integer, we associate $\lambda$ with a slender poset $P$ the Hasse diagram of which resembles the Ferrers diagram of $\lambda$. Let $X$ be the set of maximal chains of $P$. We consider Stanley's involution $\epsilon:X\rightarrow X$, which is extended from Schützenberger's evacuation on linear extensions of a finite poset. We present an explicit characterization of the fixed points of the map $\epsilon:X\rightarrow X$ when $\lambda$ is a stretched staircase or a rectangular shape. Unexpectedly, the fixed points have a nice structure, i.e., a fixed point can be decomposed in half into two chains such that the first half and the second half are the evacuation of each other. As a consequence, we prove anew Stembridge's $q=-1$ phenomenon for the maximal chains of $P$ under the involution $\epsilon$ for the restricted shapes.


Sign in / Sign up

Export Citation Format

Share Document