scholarly journals Central Nervous System Prostaglandin Endoperoxide Synthase‐1 and −2 Responses to Oestradiol and Cerebral Hypoperfusion in Late‐Gestation Fetal Sheep

2003 ◽  
Vol 549 (2) ◽  
pp. 573-581 ◽  
Author(s):  
Charles E. Wood ◽  
Damian Giroux
Endocrinology ◽  
2008 ◽  
Vol 149 (8) ◽  
pp. 4128-4136 ◽  
Author(s):  
Jason Gersting ◽  
Christine E. Schaub ◽  
Maureen Keller-Wood ◽  
Charles E. Wood

Maturation of the fetal hypothalamus-pituitary-adrenal axis is critical for the timely somatic development of the fetus and readiness for birth. Recently, we proposed that prostaglandin generation within the fetal central nervous system is critical for the modulation of hypotension-induced fetal ACTH secretion. The present study was designed to test the hypothesis that the preparturient increase in fetal ACTH secretion is dependent upon fetal central nervous system prostaglandin synthesis mediated by the activity of prostaglandin endoperoxide synthase (PGHS)-2 (cyclooxygenase-2) in the fetal brain. We performed two studies in chronically catheterized fetal sheep. In the first study, we infused nimesulide or vehicle intracerebroventricularly (icv) into singleton fetal sheep and collected blood samples until spontaneous parturition. Nimesulide significantly delayed parturition, and inhibited fetal ACTH and proopiomelanocortin secretion but did not prevent the preparturient increase in fetal plasma cortisol concentration. In the second study, we used twin fetuses. One fetus received intracerebroventricular nimesulide and the other intracerebroventricular vehicle. Nimesulide reduced brain tissue concentrations of prostaglandin estradiol, while not affecting plasma prostaglandin E2 concentrations, demonstrating an action restricted to the fetal brain. Nimesulide reduced PGHS-2 mRNA and increased PGHS-2 protein, while not altering PGHS-1 mRNA or protein in most brain regions, suggesting an effect of the inhibitor on PGHS-2 turnover and relative specificity for PGHS-2 in vivo. We conclude that the preparturient increase in fetal ACTH and proopiomelanocortin is dependent upon the activity of PGHS-2 in the fetal brain. However, we also conclude that the timing of parturition is not solely dependent upon ACTH in this species.


1987 ◽  
Vol 252 (1) ◽  
pp. R7-R12 ◽  
Author(s):  
J. A. Schuijers ◽  
D. W. Walker ◽  
C. A. Browne ◽  
G. D. Thorburn

Fetal lambs were treated with a single dose of anti-mouse nerve growth factor (anti-NGF) at 80 days gestational age. The catecholamine content of tissues was determined at 135 days gestational age. There was a reduction of either norepinephrine, epinephrine, or both, in the thymus, thyroid, atrium (but not ventricle), lung, liver, kidney, and jejunum when compared with age-matched control fetuses. The spleen, ileum, colon, and the adrenal glands were not affected by anti-NGF. In treated fetuses there was a reduction in catecholamine content of the thalamus, hypothalamus, hippocampus, medulla, cerebellum, and cervical spinal cord. These results show that some tissues are sensitive to, and some are refractory to, the action of anti-NGF at 80 days gestation. Also the results suggest that NGF may play a role in the development of catecholamine-containing neurons within the central nervous system.


Sign in / Sign up

Export Citation Format

Share Document