scholarly journals Gadolinium reduces short-term stretch-induced muscle damage in isolated mdx mouse muscle fibres

2003 ◽  
Vol 552 (2) ◽  
pp. 449-458 ◽  
Author(s):  
E. W. Yeung
1994 ◽  
Vol 426 (6) ◽  
pp. 499-505 ◽  
Author(s):  
J. Pressmar ◽  
H. Brinkmeier ◽  
M. J. Seewald ◽  
T. Naumann ◽  
R. R�del
Keyword(s):  

2000 ◽  
Vol 113 (12) ◽  
pp. 2299-2308 ◽  
Author(s):  
L. Heslop ◽  
J.E. Morgan ◽  
T.A. Partridge

Injection of the myotoxin notexin, was found to induce regeneration in muscles that had been subjected to 18 Gy of radiation. This finding was unexpected as irradiation doses of this magnitude are known to block regeneration in dystrophic (mdx) mouse muscle. To investigate this phenomenon further we subjected mdx and normal (C57Bl/10) muscle to irradiation and notexin treatment and analysed them in two ways. First by counting the number of newly regenerated myofibres expressing developmental myosin in cryosections of damaged muscles. Second, by isolating single myofibres from treated muscles and counting the number of muscle precursor cells issuing from these over 2 day and 5 day periods. After irradiation neither normal nor dystrophic muscles regenerate to any significant extent. Moreover, single myofibres cultured from such muscles produce very few muscle precursor cells and these undergo little or no proliferation. However, when irradiated normal and mdx muscles were subsequently treated with notexin, regeneration was observed. In addition, some of the single myofibres produced rapidly proliferative muscle precursor cells when cultured. This occurred more frequently, and the myogenic cells proliferated more extensively, with fibres cultured from normal compared with dystrophic muscles. Even after 25 Gy, notexin induced some regeneration but no proliferative myogenic cells remained associated with the muscle fibres. Thus, skeletal muscles contain a number of functionally distinct populations of myogenic cells. Most are radiation sensitive. However, some survive 18 Gy as proliferative myogenic cells that can be evoked by extreme conditions of muscle damage; this population is markedly diminished in muscles of the mdx mouse. A small third population survives 25 Gy and forms muscle but not proliferative myogenic cells.


1995 ◽  
Vol 108 (1) ◽  
pp. 207-214 ◽  
Author(s):  
A.J. Gibson ◽  
J. Karasinski ◽  
J. Relvas ◽  
J. Moss ◽  
T.G. Sherratt ◽  
...  

Duchenne muscular dystrophy is a primary muscle disease that manifests itself in young boys as a result of a defect in a gene located on the X-chromosome. This gene codes for dystrophin, a normal muscle protein that is located beneath the sarcolemma of muscle fibres. Therapies to alleviate this disease have centred on implanting normal muscle precursor cells into dystrophic fibres to compensate for the lack of this gene and its product. To date, donor cells for implantation in such therapy have been of myogenic origin, derived from paternal biopsies. Success in human muscle, however, has been limited and may reflect immune rejection problems. To overcome this problem the patient's own myogenic cells, with the dystrophin gene inserted, could be used, but this could lead to other problems, since these cells are those that are functionally compromised by the disease. Here, we report the presence of high numbers of dystrophin-positive fibres after implanting dermal fibroblasts from normal mice into the muscle of the mdx mouse-the genetic homologue of Duchenne muscular dystrophy. Dystrophin-positive fibres were also abundant in mdx muscle following the implantation of cloned dermal fibroblasts from the normal mouse. Our results suggest the in vivo conversion of these non-myogenic cells to the myogenic pathway resulting in the formation of dystrophin-positive muscle fibres in the deficient host. The use of dermal fibroblasts may provide an alternative approach to the previously attempted myoblast transfer therapy, which in human trials has yielded disappointing results.


2015 ◽  
Vol 47 ◽  
pp. 646
Author(s):  
Kevin Schill ◽  
Alex Altenburger ◽  
Alex Fultz ◽  
Jeovanna Lowe ◽  
Muthu Periasamy ◽  
...  

The Analyst ◽  
2020 ◽  
Vol 145 (22) ◽  
pp. 7242-7251
Author(s):  
Jessica R. Terrill ◽  
Samuel M. Webb ◽  
Peter G. Arthur ◽  
Mark J. Hackett

Sulfur K-edge XANES was used to quantify changes in the taurine content of mouse muscle tissue in a model of muscular dystrophy. The changes could be associated with markers of disease pathology that were revealed by classical H&E histology.


Sign in / Sign up

Export Citation Format

Share Document