Three-Dimensional Computational Fluid Dynamics Modeling of Alterations in Coronary Wall Shear Stress Produced by Stent Implantation

2003 ◽  
Vol 31 (8) ◽  
pp. 972-980 ◽  
Author(s):  
John F. LaDisa, Jr. ◽  
Ismail Guler ◽  
Lars E. Olson ◽  
Douglas A. Hettrick ◽  
Judy R. Kersten ◽  
...  
2004 ◽  
Vol 97 (1) ◽  
pp. 424-430 ◽  
Author(s):  
John F. LaDisa ◽  
Lars E. Olson ◽  
Ismail Guler ◽  
Douglas A. Hettrick ◽  
Said H. Audi ◽  
...  

Restenosis limits the effectiveness of stents, but the mechanisms responsible for this phenomenon remain incompletely described. Stent geometry and expansion during deployment produce alterations in vascular anatomy that may adversely affect wall shear stress (WSS) and correlate with neointimal hyperplasia. These considerations have been neglected in previous computational fluid dynamics models of stent hemodynamics. Thus we tested the hypothesis that deployment diameter and stent strut properties (e.g., number, width, and thickness) influence indexes of WSS predicted with three-dimensional computational fluid dynamics. Simulations were based on canine coronary artery diameter measurements. Stent-to-artery ratios of 1.1 or 1.2:1 were modeled, and computational vessels containing four or eight struts of two widths (0.197 or 0.329 mm) and two thicknesses (0.096 or 0.056 mm) subjected to an inlet velocity of 0.105 m/s were examined. WSS and spatial WSS gradients were calculated and expressed as a percentage of the stent and vessel area. Reducing strut thickness caused regions subjected to low WSS (<5 dyn/cm2) to decrease by ∼87%. Increasing the number of struts produced a 2.75-fold increase in exposure to low WSS. Reducing strut width also caused a modest increase in the area of the vessel experiencing low WSS. Use of a 1.2:1 deployment ratio increased exposure to low WSS by 12-fold compared with stents implanted in a 1.1:1 stent-to-vessel ratio. Thinner struts caused a modest reduction in the area of the vessel subjected to elevated WSS gradients, but values were similar for the other simulations. The results suggest that stent designs that reduce strut number and thickness are less likely to subject the vessel to distributions of WSS associated with neointimal hyperplasia.


2005 ◽  
Vol 98 (3) ◽  
pp. 947-957 ◽  
Author(s):  
John F. LaDisa ◽  
Lars E. Olson ◽  
Ismail Guler ◽  
Douglas A. Hettrick ◽  
Judy R. Kersten ◽  
...  

The success of vascular stents in the restoration of blood flow is limited by restenosis. Recent data generated from computational fluid dynamics (CFD) models suggest that stent geometry may cause local alterations in wall shear stress (WSS) that have been associated with neointimal hyperplasia and subsequent restenosis. However, previous CFD studies have ignored histological evidence of vascular straightening between circumferential stent struts. We tested the hypothesis that consideration of stent-induced vascular deformation may more accurately predict alterations in indexes of WSS that may subsequently account for histological findings after stenting. We further tested the hypothesis that the severity of these alterations in WSS varies with the degree of vascular deformation after implantation. Steady-state and time-dependent simulations of three-dimensional CFD arteries based on canine coronary artery measurements of diameter and blood flow were conducted, and WSS and WSS gradients were calculated. Circumferential straightening introduced areas of high WSS between stent struts that were absent in stented vessels of circular cross section. The area of vessel exposed to low WSS was dependent on the degree of circumferential vascular deformation and axial location within the stent. Stents with four vs. eight struts increased the intrastrut area of low WSS in vessels, regardless of cross-sectional geometry. Elevated WSS gradients were also observed between struts in vessels with polygonal cross sections. The results obtained using three-dimensional CFD models suggest that changes in vascular geometry after stent implantation are important determinants of WSS distributions that may be associated with subsequent neointimal hyperplasia.


Vascular ◽  
2014 ◽  
Vol 23 (5) ◽  
pp. 474-482 ◽  
Author(s):  
S Demirel ◽  
D Chen ◽  
Y Mei ◽  
S Partovi ◽  
H von Tengg-Kobligk ◽  
...  

Purpose: To compare postoperative morphological and rheological conditions after eversion carotid endarterectomy versus conventional carotid endarterectomy using computational fluid dynamics. Basic methods: Hemodynamic metrics (velocity, wall shear stress, time-averaged wall shear stress and temporal gradient wall shear stress) in the carotid arteries were simulated in one patient after conventional carotid endarterectomy and one patient after eversion carotid endarterectomy by computational fluid dynamics analysis based on patient specific data. Principal findings: Systolic peak of the eversion carotid endarterectomy model showed a gradually decreased pressure along the stream path, the conventional carotid endarterectomy model revealed high pressure (about 180 Pa) at the carotid bulb. Regions of low wall shear stress in the conventional carotid endarterectomy model were much larger than that in the eversion carotid endarterectomy model and with lower time-averaged wall shear stress values (conventional carotid endarterectomy: 0.03–5.46 Pa vs. eversion carotid endarterectomy: 0.12–5.22 Pa). Conclusions: Computational fluid dynamics after conventional carotid endarterectomy and eversion carotid endarterectomy disclosed differences in hemodynamic patterns. Larger studies are necessary to assess whether these differences are consistent and might explain different rates of restenosis in both techniques.


Sign in / Sign up

Export Citation Format

Share Document