Numerical Simulation of Cone Penetration Tests Inside Suction Caisson Foundations in Sand

2021 ◽  
Author(s):  
Marc Stapelfeldt ◽  
Diaa Alkateeb ◽  
J\xfcrgen Grabe ◽  
Britta Bienen
Author(s):  
Marc Stapelfeldt ◽  
Diaa Alkateeb ◽  
Jürgen Grabe ◽  
Britta Bienen

Abstract Offshore wind is increasingly utilised as a renewable energy source. A growing number of bottom fixed wind turbines installed offshore are supported by suction caisson foundations. The suction-assisted installation remains a source of uncertainty towards the in-service performance due to the unknown post-installation soil plug state. Cone penetration tests within the suction caisson can help to improve the reliability. Therefore, cone penetration tests were employed in centrifuge tests to investigate the plug state in a previously installed suction caisson. However, the performance of a cone penetration test in a small-scale experiment is connected to uncertainties: A relatively large diameter device is required to conduct the cone penetration test — especially in a centrifuge test. Different finite element models are developed in order to visualise and investigate a cone penetration test inside a suction caisson. The numerical analysis results are validated through the back-calculation of centrifuge cone penetration tests. The results of the simulated cone penetration tests inside a suction caisson are evaluated and compared to the centrifuge experiments. This investigation reinforces the scope of the centrifuge experiments and emphasises a considerable effect of the pressure transferral through the caisson lid in the soil plug state. Hence, the results of this study reduce existing uncertainties regarding possible suction installation effects on the in-service performance of caisson foundations.


2012 ◽  
Vol 45 ◽  
pp. 74-82 ◽  
Author(s):  
Mohammad Hassan Baziar ◽  
Armin Kashkooli ◽  
Alireza Saeedi-Azizkandi

2020 ◽  
Vol 205 ◽  
pp. 04005
Author(s):  
Philip J. Vardon ◽  
Joek Peuchen

A method of utilizing cone penetration tests (CPTs) is presented which gives continuous profiles of both the in situ thermal conductivity and volumetric heat capacity, along with the in situ temperature, for the upper tens of meters of the ground. Correlations from standard CPT results (cone resistance, sleeve friction and pore pressure) are utilized for both thermal conductivity and volumetric heat capacity for saturated soil. These, in conjunction with point-wise thermal conductivity and in situ temperature results using a Thermal CPT (T-CPT), allow accurate continuous profiles to be derived. The CPT-based method is shown via a field investigation supported by laboratory tests to give accurate and robust results.


2020 ◽  
Vol 23 (3-4) ◽  
Author(s):  
Jef DECKERS ◽  
Stephen LOUWYE

An east-west correlation profile through the upper Neogene succession north of Antwerp, based on cone penetration tests, reveals the architecture of the lower Pliocene Kattendijk Formation. It shows a basal incision of the Kattendijk Formation down to 20 m in Miocene sands and locally even Lower Oligocene clays. The incision is part of a much larger gully system in the region at the base of the Kattendijk Formation. The strongest gully incision is observed along the western profile, and coincides with increases in the thickness of the Kattendijk Formation from its typical four to six meters thickness in the east towards a maximum of 15 m in the west. Correlations show that this additional thickness represents a separate sequence of the Kattendijk Formation that first filled the deepest part of the gully prior to being transgressed and covered by the second sequence deposited in a larger gully system. Both sequences of the Kattendijk Formation have basal transgressive layers, and are lithologically identical. Initial, deep incision at the base of the Kattendijk Formation might have been the result of the constriction of early Pliocene tidal currents that invaded and expanded fluvial or estuarine gullies that had developed during the latest Miocene sea-level low. A similar mechanism had been proposed for the development of late Miocene gully system at the base of the Diest Formation further southeast in northern Belgium. As the wider area was transgressed and covered by the second sequence of the Kattendijk Formation, flow constriction ended, currents weakened and gully incisions were reduced in size.


Author(s):  
Meen-Wah Gui ◽  
Dong-Sheng Jeng

The application of cavity expansion theory in the back estimation of cone penetration tests conducted in calibration chambers has been carried out by many researchers. However, the theory is seldom employed by centrifuge modelers. Based on the work of spherical cavity expansion of previous researchers, this study proposed an analytical solution that incorporates the effects of cone geometry and surface roughness and the effect of compressibility to estimate the cone tip resistance. The calculated results are compared with the measured cone penetration resistance of four cone penetration tests performed in the centrifuge. The cone penetration tests were conducted in granular soil specimens having relative densities ranging between 54% and 89%. The comparison demonstrates the capacity of the cavity expansion theory in the prediction of the centrifuge cone penetration resistance.


Sign in / Sign up

Export Citation Format

Share Document