cone penetration tests
Recently Published Documents


TOTAL DOCUMENTS

208
(FIVE YEARS 50)

H-INDEX

25
(FIVE YEARS 3)

2021 ◽  
Vol 24 (3-4) ◽  
pp. 159-167
Author(s):  
Jef DECKERS ◽  
Jasper VERHAEGEN ◽  
Ilse VERGAUWEN

The sandy Zandvliet Member represents a particular, decalcified facies in the top of the Pliocene Lillo Formation in northern Belgium. Based on the correlation with nearby boreholes at the type locality of the Zandvliet Member, we were able to characterize this unit on Cone Penetration Tests. Compared to the underlying Merksem Member, the Zandvliet Member generally shows markedly lower cone resistance values. Since besides the decalcification, the Zandvliet Member is lithologically nearly identical to the underlying Merksem Member, the lower cone resistance values in the Zandvliet Member compared to the Merksem Member can only be the result of the decalcification of the Zandvliet Member. Indeed, the partly decalcified top of the Merksem Member also gives similar cone resistance values as the Zandvliet Member. Decalcification of the Eocene Brussel Sand in central Belgium is also known to have resulted in lower cone resistance values. Our Cone Penetration Test interpretations show that the thickness of the Zandvliet Member strongly varies across short distances (>10 m across 1 km). As the Zandvliet Member thickens, the underlying Merksem Member thins and vice versa. This trend is not in line with that of the under- and overlying strata, i.e. intraformational, nor with the depositional environment of these units. The thickness changes of the Zandvliet Member therefore purely reflect changes in depth of the post-depositional decalcification into the original shell-bearing sand (i.e. original Merksem Member). This confirms the existing hypothesis that the Zandvliet Member actually represents the decalcified part of the Merksem Member. The anomalous heavy mineralogy of the Zandvliet Member compared to the other members of the Lillo Formation cannot be readily explained by the acid chemical weathering which caused the decalcification. This may rather be related to a change in the primary heavy mineral signal of the upper part of the Merksem Member and equivalent Zandvliet Member compared to the underlying sequences of the Lillo Formation. The reason for the post-depositional decalcification could be similar to the Pleistocene changes in soil acidity invoked for decalcification of time-equivalent Red Crag sand in England.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6963
Author(s):  
Simon Rabarijoely ◽  
Mariusz Lech ◽  
Marek Bajda

Based on the results of dynamic probing (DP), time-domain reflectometry (TDR/MUX/MPTS), resistivity cone penetration tests (RCPT), Marchetti dilatometer tests (DMT), and seismic dilatometer tests (SDMT), it is possible to develop a relationship to calculate the relative density (Dr) and degree of saturation (Sr) of selected sandy soils. Compiled databases from documented research points for selected sandy soils were used to construct and develop direct correlations between the measured pressures p0 and p1 from DMT and shear wave velocity (Vs) from SDMT, along with pore water pressures (u0) and atmospheric pressure (Pa). The results allowed us to make a preliminary prediction when evaluating the parameters. Further, they allowed limiting the use of an additional device, especially in the case of multilayer heavy preconsolidated subsoils. Moreover, soil physical and mechanical characteristics (temperature, humidity, pressure, swelling, salinity) measured from TDR/MUX/MPTS (laboratory/field-operated meter for simultaneous measurements of soil moisture, matric potential, temperature, and salinity—bulk electrical conductivity) were assessed. The main achievement of this paper is the original proposal of using a new nomogram chart to determine the relative density and degree of saturation based on DMT and SDMT tests.


2021 ◽  
Vol 24 (1) ◽  
Author(s):  
Mingjing Jiang ◽  
Tao Zhao ◽  
Xingxing Wang

Author(s):  
Mujtaba Khidri ◽  
Lijun Deng

A screw micropile consists of a smooth shaft at the top, threaded shaft at the middle and tapered shaft at the bottom. Research is required to investigate the axial behavior and capacities of this pile type in sand. A field load test program was performed on six types of full-scale screw micropiles installed at a sandpit site using torque. Selected piles were instrumented with axial strain gauges. A geotechnical investigation, including cone penetration tests (CPT) and standard penetration tests, was undertaken. In total, 41 piles, including 8 instrumented piles, were tested. The ultimate capacities and the unit shaft resistance distributions were determined. The shaft resistance was then compared with the tip resistance of CPT. The coefficient of lateral earth pressure and combined shaft resistance factor was determined for each pile segment, and then an effective stress method based on the combined shaft resistance factor was used to estimate the capacity of test piles. A theoretical torque model was developed using CPT sleeve friction; the model was verified by comparing the estimated torque to the measured torque of test piles. In the end, empirical torque factors were developed.


2021 ◽  
pp. 106252
Author(s):  
Yongfeng Deng ◽  
Haochen Xue ◽  
Yongxin Wu ◽  
Tongwei Zhang ◽  
Zilong Wu ◽  
...  

Author(s):  
O. J. Airen ◽  
K. K. Oboshenure

An assessment of the immediate causes of persistent road pavement failure in Oworonshoki, Koshofe area of Lagos, Nigeria using geophysical and geotechnical methods was carried out. Six traverses were occupied in the study area along the alignment of the road. Electrical Resistivity Imaging (ERI) data using the Wenner array were acquired along the six traverses. These were followed by six (6) Vertical Electrical Sounding (VES) data along the traverses. On traverse 1 are VES 1 and 2, on traverse 2 are VES 3 and 4, on traverse 3 are VES 5 and 6. One boring and three Cone Penetration Testing (CPT) were conducted along traverse 6 while the three CPTs were carried out on traverse 3, 4 and 5 respectively. The inverted 2D results reveal that resistivity values vary from 6.74 – 1333 Ωm in the study area. Four resistivity structures are delineated which are peat, clay/sandy clay, clayey sand and sand. The peat has resistivity values ranging from 6.74 – 17.7 Ωm, clay/sandy clay (20.9 – 86.9 Ωm), clayey sand (96.3 – 194 Ωm) and sand (245 – 1333 Ωm). The peat is laterally extensive and occurs from the surface to a depth of 25 m. The peat is underlain by the clay which is fairly extensive across the area of study with a thickness of 2.5 – 20 m in most location. The Cone Penetration Tests (CPT) reveal cone resistance values that progressively varies from 0 – 101 kg/m2 from the surface to a depth of 17 m, indicating dense earth materials at deeper depth while at near surface, they are incompetent soft clayey earth materials. The laterally extensive peat and clay units underlying the road pavement, extending up 30 m depth as revealed from the 2D ERI, the geoelectric investigation and the borehole are suspected to be responsible for the persistent settlement, rutting and pitting of the road pavement. The thickness of the peat/clay and the lateral extent may not be economically admissible for excavation during construction. Pile foundations to the dense gravely sand at 40 m depth along the stretch of the road is therefore recommended for stable road pavement.


2021 ◽  
Vol 144 ◽  
pp. 106677 ◽  
Author(s):  
Kaleigh M. Yost ◽  
Russell A. Green ◽  
Sneha Upadhyaya ◽  
Brett W. Maurer ◽  
Alba Yerro-Colom ◽  
...  

Author(s):  
Max O. Kluger ◽  
Stefan Kreiter ◽  
Florian T. Stähler ◽  
Majid Goodarzi ◽  
Tim Stanski ◽  
...  

AbstractIt is commonly assumed that dry and saturated sands exhibit similar cone resistance–relative density relationships. Some studies pointed out that partial saturation and calcareous sands with considerable fines content are potential factors affecting these relationships. However, there is experimental evidence in Shaqour Bull Eng Geol Environ 66:59-70, (2006) that clean uncemented quartz sand may exhibit lower cone resistance in saturated conditions. The present study aims on contributing towards better understanding the effect of water saturation on cone resistance in sand. For this purpose, Ticino sand samples were prepared dry and saturated in a calibration chamber and cone penetration tests were performed over a wide range of relative densities and at two consolidation stresses. Overall, it was observed that dry and saturated samples exhibited similar cone resistances. Only slightly higher cone resistances were observed for dry samples at the lower consolidation stress. Two anomalous samples, which were tested dry at medium relative density, were found to exhibit way higher cone resistances than expected from published cone resistance–relative density relationships. The Young's modulus was observed to be proportional to cone resistance and independent of whether a sample was tested dry or saturated, being therefore considered as more robust soil property for cone resistance relationships.


Sign in / Sign up

Export Citation Format

Share Document