Time-Domain Simulation of Subsea Equipments Installation Using Hydrodynamic Derivatives

2021 ◽  
Author(s):  
Emerson Andrade ◽  
Joel Sena Sales Jr. ◽  
Antonio Carlos Fernandes ◽  
Mario Luis Ribeiro ◽  
Pedro Teixeira
Author(s):  
Mingjie Zhang ◽  
Ole Øiseth

AbstractA convolution-based numerical algorithm is presented for the time-domain analysis of fluidelastic instability in tube arrays, emphasizing in detail some key numerical issues involved in the time-domain simulation. The unit-step and unit-impulse response functions, as two elementary building blocks for the time-domain analysis, are interpreted systematically. An amplitude-dependent unit-step or unit-impulse response function is introduced to capture the main features of the nonlinear fluidelastic (FE) forces. Connections of these elementary functions with conventional frequency-domain unsteady FE force coefficients are discussed to facilitate the identification of model parameters. Due to the lack of a reliable method to directly identify the unit-step or unit-impulse response function, the response function is indirectly identified based on the unsteady FE force coefficients. However, the transient feature captured by the indirectly identified response function may not be consistent with the physical fluid-memory effects. A recursive function is derived for FE force simulation to reduce the computational cost of the convolution operation. Numerical examples of two tube arrays, containing both a single flexible tube and multiple flexible tubes, are provided to validate the fidelity of the time-domain simulation. It is proven that the present time-domain simulation can achieve the same level of accuracy as the frequency-domain simulation based on the unsteady FE force coefficients. The convolution-based time-domain simulation can be used to more accurately evaluate the integrity of tube arrays by considering various nonlinear effects and non-uniform flow conditions. However, the indirectly identified unit-step or unit-impulse response function may fail to capture the underlying discontinuity in the stability curve due to the prespecified expression for fluid-memory effects.


2015 ◽  
Vol 1092-1093 ◽  
pp. 356-361
Author(s):  
Peng Fei Zhang ◽  
Lian Guang Liu

With the application and development of Power Electronics, HVDC is applied more widely China. However, HVDC system has the possibilities to cause subsynchronous torsional vibration interaction with turbine generator shaft mechanical system. This paper simply introduces the mechanism, analytical methods and suppression measures of subsynchronous oscillation. Then it establishes a power plant model in islanding model using PSCAD, and analyzes the effects of the number and output of generators to SSO, and verifies the effect of SEDC and SSDC using time-domain simulation method. Simulation results show that the more number and output of generators is detrimental to the stable convergence of subsynchronous oscillation, and SEDC、SSDC can restrain unstable SSO, avoid divergence of SSO, ensure the generators and system operate safely and stably


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 322 ◽  
Author(s):  
Ping He ◽  
Seyed Arefifar ◽  
Congshan Li ◽  
Fushuan Wen ◽  
Yuqi Ji ◽  
...  

The well-developed unified power flow controller (UPFC) has demonstrated its capability in providing voltage support and improving power system stability. The objective of this paper is to demonstrate the capability of the UPFC in mitigating oscillations in a wind farm integrated power system by employing eigenvalue analysis and dynamic time-domain simulation approaches. For this purpose, a power oscillation damping controller (PODC) of the UPFC is designed for damping oscillations caused by disturbances in a given interconnected power system, including the change in tie-line power, the changes of wind power outputs, and others. Simulations are carried out for two sample power systems, i.e., a four-machine system and an eight-machine system, for demonstration. Numerous eigenvalue analysis and dynamic time-domain simulation results confirm that the UPFC equipped with the designed PODC can effectively suppress oscillations of power systems under various disturbance scenarios.


Sign in / Sign up

Export Citation Format

Share Document