Effects of Flight Controls and Cockpit Layout Design in Rotorcraft-Pilot Couplings: A Computational Approach

2021 ◽  
Author(s):  
Alessandro Cocco ◽  
Andrea Zanoni ◽  
Vincenzo Muscarello ◽  
Pierangelo Masarati
Author(s):  
Alessandro Cocco ◽  
Andrea Zanoni ◽  
Vincenzo Muscarello ◽  
Pierangelo Masarati

Abstract Rotorcraft-Pilot-Coupling (RPC) is a dynamic phenomenon in which the rotorcraft vibrations are transmitted through the cockpit, the seat and the control inceptors to the helicopter pilot and to the passengers. Handling qualities are affected by the proneness of the of rotorcraft to give rise to adverse interactions, an unwanted quality that can be captured by the so called biodynamic feedthrough. In this work, a multibody model of the whole upper body, developed by the authors, is used in order of evaluate the effects of several parameters influencing cockpit layout design: namely, the pilot seat backrest angle, compliance, and connection to the cockpit floor. As a representative parameter of the flight controls design, the effects related to the characteristics of the trim spring is also investigated. Simulations encompass subjects of different anthropometric data, in order to represent possible intra-subject variations. Biomechanical feedthroughs at the collective and cyclic commands, in response to vertical acceleration inputs, are discussed, along with single-harmonic, high magnitude input responses that highlight the presence and importance of nonlinear effects.


Author(s):  
S. Nakahara ◽  
D. M. Maher

Since Head first demonstrated the advantages of computer displayed theoretical intensities from defective crystals, computer display techniques have become important in image analysis. However the computational methods employed resort largely to numerical integration of the dynamical equations of electron diffraction. As a consequence, the interpretation of the results in terms of the defect displacement field and diffracting variables is difficult to follow in detail. In contrast to this type of computational approach which is based on a plane-wave expansion of the excited waves within the crystal (i.e. Darwin representation ), Wilkens assumed scattering of modified Bloch waves by an imperfect crystal. For localized defects, the wave amplitudes can be described analytically and this formulation has been used successfully to predict the black-white symmetry of images arising from small dislocation loops.


Author(s):  
Elizabeth S Baranowski ◽  
Sreejita Ghosh ◽  
Cedric HL Shackleton ◽  
Angela E Taylor ◽  
Beverly A Hughes ◽  
...  

2020 ◽  
Author(s):  
Francisco Andújar-Vera ◽  
Cristina García-Fontana ◽  
Sheila González-Salvatierra ◽  
Manuel Muñoz-Torres ◽  
Beatriz García-Fontana

1983 ◽  
Author(s):  
Walter C. Kuhnel ◽  
Robert L. Woods
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document