Experimental Demonstration of Amplitude-Dependent Band Structure and Plane Wave Stability in Nonlinear Lattices

2021 ◽  
Author(s):  
Matthew Fronk ◽  
Muhammad Salman ◽  
Michael Leamy
2016 ◽  
Vol 30 (30) ◽  
pp. 1650217 ◽  
Author(s):  
Sihao Xia ◽  
Lei Liu ◽  
Yike Kong ◽  
Honggang Wang ◽  
Meishan Wang

In order to investigate the influences of different Al constituents on Ga[Formula: see text]Al[Formula: see text]N nanowires, the formation energy, stability, band structure, densities of states and optical properties of Ga[Formula: see text]Al[Formula: see text]N nanowires with different Al constituents are calculated using first-principles plane-wave ultrasoft pseudopotential method. Results show that Ga[Formula: see text]Al[Formula: see text]N nanowires become more stable with increasing Al constituent. Bandgap of Ga[Formula: see text]Al[Formula: see text]N nanowires increases as the Al constituent increases but with a lower amplification compared with bulk Ga[Formula: see text]Al[Formula: see text]N. The peaks of static dielectric constants show a decreasing trend and move towards high-energy side as Al constituent increases. The absorption of Ga[Formula: see text]Al[Formula: see text]N nanowires shows an interesting phenomenon that it firstly increases and then decreases slightly as the Al constituent increases. Reflectivity of Ga[Formula: see text]Al[Formula: see text]N nanowires is much smaller than that of the bulk. The optical properties of Ga[Formula: see text]Al[Formula: see text]N nanowires show a blueshift effect as Al composition increases. According to these calculations, it is found that Ga[Formula: see text]Al[Formula: see text]N nanowires are appropriate to be applied into photoelectric detecting materials by adjusting the Al constituent of Ga[Formula: see text]Al[Formula: see text]N nanowires.


Sign in / Sign up

Export Citation Format

Share Document