photonic band structure
Recently Published Documents


TOTAL DOCUMENTS

207
(FIVE YEARS 17)

H-INDEX

36
(FIVE YEARS 2)

Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Seungmin Nam ◽  
Dahee Wang ◽  
Gyubin Lee ◽  
Su Seok Choi

Abstract Chiral photonic-band structure provides technical benefits in the form of a self-assembled helical structure and further functional wavelength tunability that exploits helical deformation according to pitch changes. The stopband wavelength control of the chiral photonic-band structure can be obtained by individual electrical methods or mechanical stretching deformation approaches. However, research on combined electric control of stretchable chiral photonic-band wavelength control while ensuring optical stability during the tuning process has remained limited till now. In this study, using the hybrid structure of elastomeric mesogenic chiral photonic gels (CPGs) with an electrically controlled dielectric soft actuator, we report the first observation of electrically stretchable CPGs and their electro-mechano-optical behaviors. The reliable wavelength tuning of a CPG to a broadband wavelength of ∼171 nm changed with high optical stability and repeated wavelength transitions of up to 100 times. Accordingly, for the first time, electrical wavelength tuning method of stretchable chiral liquid crystal photonicband structure was investigated.


2021 ◽  
Vol 11 (23) ◽  
pp. 11557
Author(s):  
Dong Zhao ◽  
Liyan Wang ◽  
Fangmei Liu ◽  
Dong Zhong ◽  
Min Wu

We investigate the photonic bandgaps in graphene-pair arrays. Graphene sheets are installed in a bulk substrate to form periodical graphene photonic crystal. The compound system approves a photonic band structure as a light impinges on it. Multiple stopbands are induced by changing the incident frequency of light. The stopbands widths and their central frequencies could be modulated through the graphene chemical potential. The number of stopbands decreases with the increase in the spatial period of graphene pairs. Otherwise, two full passbands are realized in the parameter space composed of the incident angle and the light frequency. This investigation has potentials applied in tunable multi-stopbands filters.


2021 ◽  
Vol 2145 (1) ◽  
pp. 012040
Author(s):  
N Sitpathom ◽  
T Muangnapoh ◽  
P Kumnorkaew ◽  
S Suwanna ◽  
A Sinsarp ◽  
...  

Abstract Optical diffraction of opal structure, a colloidal photonic crystal, can be predicted by Bragg-Snell diffraction and photonic band structure. Theoretical prediction and optical measurement are frequently slightly different due to distance variation of particle packing. In this research, opal of 310 nm polystyrene beads was fabricated by self-assembly process and optically investigated in transmission spectra at varied angles. The measured spectra had less agreement to the Bragg-Snell prediction at large angle of detection. To explore influence of packing distance on optical response, photonic band structures were numerically simulated via plane-wave expansion method at presence of perturbed length in primitive lattice vectors. Extending each primitive vector with fixing others provided a different eigen-frequency of the first photonic band, although they had a symmetrical perturbation on (111) face-centered cubic. Perturbation on lattice length became much strong when the disturbing direction was out of eigenstate orientation plane.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Corentin Lechevalier ◽  
Clément Evain ◽  
Pierre Suret ◽  
François Copie ◽  
Alberto Amo ◽  
...  

AbstractFloquet-Bloch lattices are systems in which wave packets are subjet to periodic modulations both in time and space, showing rich dynamics. While this type of lattice is difficult to implement in solid-state physics, optical systems have provided excellent platforms to probe their physics: among other effects, they have revealed genuine phenomena such as the anomalous Floquet topological insulator and the funnelling of light into localised interface modes. Despite the crucial importance of the band dispersion in the photon dynamics and the topological properties of the lattice, the direct experimental measurement of the Floquet-Bloch bands has remained elusive. Here we report the direct measurement of the Floquet-Bloch bands of a photonic lattice with a single shot method. We use a system of two coupled fibre rings that implements a time-multiplexed Floquet-Bloch lattice. By Fourier transforming the impulse response of the lattice we obtain the band structure together with an accurate characterization of the lattice eigenmodes, i. e. the amplitudes and the phases of the Floquet-Bloch eigenvectors over the entire Brillouin zone. Our results open promising perspectives for the observation of topological effects in the linear and nonlinear regime in Floquet systems.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nantao Li ◽  
Taylor D. Canady ◽  
Qinglan Huang ◽  
Xing Wang ◽  
Glenn A. Fried ◽  
...  

AbstractInterferometric scattering microscopy is increasingly employed in biomedical research owing to its extraordinary capability of detecting nano-objects individually through their intrinsic elastic scattering. To significantly improve the signal-to-noise ratio without increasing illumination intensity, we developed photonic resonator interferometric scattering microscopy (PRISM) in which a dielectric photonic crystal (PC) resonator is utilized as the sample substrate. The scattered light is amplified by the PC through resonant near-field enhancement, which then interferes with the <1% transmitted light to create a large intensity contrast. Importantly, the scattered photons assume the wavevectors delineated by PC’s photonic band structure, resulting in the ability to utilize a non-immersion objective without significant loss at illumination density as low as 25 W cm−2. An analytical model of the scattering process is discussed, followed by demonstration of virus and protein detection. The results showcase the promise of nanophotonic surfaces in the development of resonance-enhanced interferometric microscopies.


APL Photonics ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 030802
Author(s):  
Daniel Leykam ◽  
Dimitris G. Angelakis

2020 ◽  
Vol 7 (12) ◽  
pp. 126201
Author(s):  
Francis Segovia-Chaves ◽  
Erik Navarro Barón ◽  
Herbert Vinck-Posada

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Filipa R. Prudêncio ◽  
Mário G. Silveirinha

AbstractTopological photonic systems have recently emerged as an exciting new paradigm to guide light without back-reflections. The Chern topological numbers of a photonic platform are usually written in terms of the Berry curvature, which depends on the normal modes of the system. Here, we use a gauge invariant Green’s function method to determine from first principles the topological invariants of photonic crystals. The proposed formalism does not require the calculation of the photonic band-structure, and can be easily implemented using the operators obtained with a standard plane-wave expansion. Furthermore, it is shown that the theory can be readily applied to the classification of topological phases of non-Hermitian photonic crystals with lossy or gainy materials, e.g., parity-time symmetric photonic crystals.


Sign in / Sign up

Export Citation Format

Share Document