scholarly journals Thermal Resistance Network Model for Heat Conduction of Amorphous Polymers

2021 ◽  
Author(s):  
Jun Zhou ◽  
Qing Xi ◽  
Jixiong He ◽  
Xiangfan Xu ◽  
Tsuneyoshi Nakayama ◽  
...  
2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Jun Zhou ◽  
Qing Xi ◽  
Jixiong He ◽  
Xiangfan Xu ◽  
Tsuneyoshi Nakayama ◽  
...  

2021 ◽  
Author(s):  
Qing Xi ◽  
Jixiong He ◽  
Tsuneyoshi Nakayama ◽  
Jun Zhou ◽  
Jun Liu ◽  
...  

2019 ◽  
Vol 71 (6) ◽  
pp. 733-740 ◽  
Author(s):  
Biao Ma ◽  
Liang Yu ◽  
Man Chen ◽  
He Yan Li ◽  
Liang Jie Zheng

PurposeThis paper aims to investigate the thermal characteristics of the clutch hydraulic system under various oil flow conditions. Increasing the oil flow is one of the most important approaches to reduce the clutch temperature. However, the effect of the oil flow on the clutch temperature remains to be explored.Design/methodology/approachThe thermal resistance network model and the lumped parameter method are used to study the thermal characteristics of the clutch hydraulic system. The predicted temperature variations of the clutch and the oil are compared with experimental data.FindingsResults demonstrate that the larger the friction power is, the higher the temperatures of the clutch and the oil are. However, the temperature growth rates of the clutch and oil present different trends: the former decreases gradually and the latter increases constantly. Additionally, increasing the oil flow within a certain range gives rise to the decrease of clutch temperature and the increase of oil temperature; nevertheless, their variation trends are gradually weakening. When the oil flow is large enough, it brings a slight effect on the clutch temperature rise.Originality/valueThis paper extends the knowledge into the oil flow supply of the clutch hydraulic system. The conclusions can provide a theoretical guidance for the oil management of the transmission system. Additionally, the thermal resistance network model is also effective and efficient for other hydraulic equipment to predict the temperature variation.


2021 ◽  
Vol 295 ◽  
pp. 117038
Author(s):  
Jie Chen ◽  
Dongsheng Ren ◽  
Hungjen Hsu ◽  
Li Wang ◽  
Xiangming He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document