Film Cooling Effectiveness for Short Film Cooling Holes Fed by a Narrow Plenum

1999 ◽  
Vol 122 (3) ◽  
pp. 553-557 ◽  
Author(s):  
C. A. Hale ◽  
M. W. Plesniak ◽  
S. Ramadhyani

The adiabatic, steady-state liquid crystal technique was used to measure surface adiabatic film cooling effectiveness values in the near-hole region X/D<10. A parametric study was conducted for a single row of short holes L/D⩽3 fed by a narrow plenum H/D=1. Film cooling effectiveness values are presented and compared for various L/D ratios (0.66 to 3.0), three different blowing ratios (0.5, 1.0, and 1.5), two different plenum feed configurations (co-flow and counterflow), and two different injection angles (35 and 90 deg). Injection hole geometry and plenum feed direction were found to affect short hole film cooling performance significantly. Under certain conditions, similar or improved coverage was achieved with 90 deg holes compared with 35 deg holes. This result has important implications for manufacturing of thin-walled film-cooled blades or vanes. [S0889-504X(00)00603-6]

Author(s):  
C. A. Hale ◽  
M. W. Plesniak ◽  
S. Ramadhyani

The adiabatic, steady-state liquid crystal technique was used to measure surface adiabatic film cooling effectiveness values in the near-hole region (X / D < 10). A parametric study was conducted for a single row of short holes (L / D ≤ 3) fed by a narrow plenum (H / D = 1). Film cooling effectiveness values are presented and compared for various L / D ratios (0.66 to 3.0), three different blowing ratios (0.5, 1.0, and 1.5), two different plenum feed configurations (co-flow and counter flow), and two different injection angles (35° and 90°). Injection hole geometery and plenum feed direction were found to significantly affect short hole film cooling performance. Under certain conditions, comparable or improved coverage was achieved with 90° holes as with 35° holes. This result has important implications for manufacturing of thin-walled film-cooled blades or vanes.


2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Dale W. Fox ◽  
Fraser B. Jones ◽  
John W. McClintic ◽  
David G. Bogard ◽  
Thomas E. Dyson ◽  
...  

Most studies of turbine airfoil film cooling in laboratory test facilities have used relatively large plenums to feed flow into the coolant holes. However, a more realistic inlet condition for the film cooling holes is a relatively small channel. Previous studies have shown that the film cooling performance is significantly degraded when fed by perpendicular internal crossflow in a smooth channel. In this study, angled rib turbulators were installed in two geometric configurations inside the internal crossflow channel, at 45 deg and 135 deg, to assess the impact on film cooling effectiveness. Film cooling hole inlets were positioned in both prerib and postrib locations to test the effect of hole inlet position on film cooling performance. A test was performed independently varying channel velocity ratio and jet to mainstream velocity ratio. These results were compared to the film cooling performance of previously measured shaped holes fed by a smooth internal channel. The film cooling hole discharge coefficients and channel friction factors were also measured for both rib configurations with varying channel and inlet velocity ratios. Spatially averaged film cooling effectiveness is largely similar to the holes fed by the smooth internal crossflow channel, but hole-to-hole variation due to inlet position was observed.


2021 ◽  
Author(s):  
Siavash Khajehhasani

A numerical investigation of the film cooling performance on novel film hole schemes is presented using Reynolds-Averaged Navier-Stokes analysis. The investigation considers low and high blowing ratios for both flat plate film cooling and the leading edge of a turbine blade. A novel film hole geometry using a circular exit shaped hole is proposed, and the influence of an existing sister holes’ technique is investigated. The results indicate that high film cooling effectiveness is achieved at higher blowing ratios, results of which are even greater when in the presence of discrete sister holes where film cooling effectiveness results reach a plateau. Furthermore, a decrease in the strength of the counter-rotating vortex pairs is evident, which results in more attached coolant to the plate’s surface and a reduction in aerodynamic losses. Modifications are made to the spanwise and streamwise locations of the sister holes around the conventional cylindrical hole geometry. It is found that the spanwise variations have a significant influence on the film cooling effectiveness results, while only minor effects are observed for the streamwise variations. Positioning the sister holes in locations farther from the centerline increases the lateral spreading of the coolant air over the plate’s surface. This result is further verified through the flow structure analysis. Combinations of sister holes are joined with the primary injection hole to produce innovative variant sister shaped single-holes. The jet lift-off is significantly decreased for the downstream and up/downstream configurations of the proposed scheme for the flat plate film cooling. These schemes have shown notable film cooling improvements whereby more lateral distribution of coolant is obtained and less penetration of coolant into the mainstream flow is observed. The performance of the sister shaped single-holes are evaluated at the leading edge of a turbine blade. At the higher blowing ratios, a noticeable improvement in film cooling performance including the effectiveness and the lateral spread of the cooling air jet has been observed for the upstream and up/downstream schemes, in particular on the suction side. It is determined that the mixing of the coolant with the high mainstream flow at the leading edge of the blade is considerably decreased for the upstream and up/downstream configurations and more adhered coolant to the blade’s surface is achieved.


2006 ◽  
Vol 128 (3) ◽  
pp. 579-588 ◽  
Author(s):  
Sarah M. Coulthard ◽  
Ralph J. Volino ◽  
Karen A. Flack

The effect of an unheated starting length upstream of a row of film cooling holes was studied experimentally to determine its effect on heat transfer coefficients downstream of the holes. Cases with a single row of cylindrical film cooling holes inclined at 35deg to the surface of a flat plate were considered at blowing ratios of 0.25, 0.5, 1.0, and 1.5. For each case, experiments were conducted to determine the film-cooling effectiveness and the Stanton number distributions in cases with the surface upstream of the holes heated and unheated. Measurements were made using an infrared camera, thermocouples, and hot and cold-wire anemometry. Ratios were computed of the Stanton number with film cooling (Stf) to corresponding Stanton numbers in cases without film cooling (Sto), but the same surface heating conditions. Contours of these ratios were qualitatively the same regardless of the upstream heating conditions, but the ratios were larger for the cases with a heating starting length. Differences were most pronounced just downstream of the holes and for the lower blowing rate cases. Even 12 diameters downstream of the holes, the Stanton number ratios were 10–15% higher with a heated starting length. At higher blowing rates the differences between the heated and unheated starting length cases were not significant. The differences in Stanton number distributions are related to jet flow structures, which vary with blowing rate.


Author(s):  
Lesley M. Wright ◽  
Evan L. Martin

Detailed film cooling effectiveness distributions are obtained on a flat plate using the pressure sensitive paint (PSP) technique. The effects of average blowing ratio (M = 0.25–1.0) and coolant – to – mainstream density ratio (DR = 1.0–1.4) are evaluated in a low speed wind tunnel with a freestream velocity of 8.5 m/s and a freestream turbulence intensity of 6.8%. The coolant – to – mainstream density ratio is varied by using either nitrogen (DR = 1.0) or argon (DR = 1.4) as the coolant gases. The double hole geometry consists of a row of simple angle (θ = 35°), cylindrical holes coupled with one row of compound angle holes (θ = 45°, β = 50°). With the selected geometry, the compound holes effectively weaken the counter rotating vortex pair formed within the traditional simple angle hole. Therefore, the surface film cooling effectiveness is increased compared to a single row of simple angle film cooling holes. While increasing the blowing ratio decreases the film cooling effectiveness, the severity of the film cooling effectiveness reduction is less than with the single row of holes.


Author(s):  
Sanga Lee ◽  
Dong-Ho Rhee ◽  
Kwanjung Yee

In spite of a myriad of researches on the optimal shape of film cooling holes, only a few attempts have been made to optimize the hole arrangement for film cooling so far. Moreover, although the general scale of film cooling hole is so small that manufacturing tolerance has substantial effects on the cooling performance of turbine, the researches on this issue are even scarcer. If it is possible to obtain optimal hole arrangement which not only improve the film cooling performance but also is robust to the manufacturing tolerance, then overall cooling performance of a turbine would become more reliable and useful from the practical point of view. To this end, the present study proposed a robust design optimization procedure which takes the manufacturing uncertainties into account. The procedure was subsequently applied to the film cooling holes on high pressure turbine nozzle pressure side to obtain the robust array shape under the uncertainty of the manufacturing tolerance. First, the array of the holes was parameterized by 5 design variables using the newly suggested shape functions, and 2 representative factors were considered for the manufacturing tolerance of the film cooling hole. Probabilistic process that consists of Kriging surrogate model and Monte Carlo Simulation with descriptive sampling method was coupled with the design optimization process using Genetic Algorithm. Through this, film cooling hole array which shows the high performance, yet robust to the manufacturing tolerance was obtained, and the effects of the manufacturing tolerance on the cooling performance was carefully investigated. As a result, the region where the film cooling effectiveness is noticeable, as well as the maximum width of the variation of the film cooling effectiveness were reduced through optimization, and it is also confirmed that the tolerance of the holes near the leading edge is more influential to the cooling performance because the film cooling effectiveness is more sensitive to the manufacturing tolerance of the leading edge than that of the trailing edge.


Author(s):  
Dong Ho Rhee ◽  
Youn Seok Lee ◽  
Young Bong Kim ◽  
Hyung Hee Cho

An experimental study has been conducted to measure the temperature fields and the local film cooling effectiveness for two and three staggered rows of the rectangular-shaped film cooling holes with various blowing rates. Three different cooling hole shapes such as a straight rectangular hole, a rectangular hole with laterally expanded exit and a circular hole are tested. The rectangular cross-section has the aspect ratio of 2 at the hole inlet with the hydraulic diameter of 10 mm. The area ratio of the exit to the hole inlet is 1.8 for the rectangular hole with expanded exit, which is similar to a two-dimensional slot. The holes are spaced 3d apart in the spanwise direction and 4d apart in the streamwise direction with a staggered arrangement. Temperature fields are acquired using a three-axis traversing system equipped with a thermocouple rake. A thermochromic liquid crystals technique is applied to determine adiabatic film cooling effectiveness values and heat transfer coefficients on the test surface. The results show that the rectangular-shaped holes provide better performance than the cylindrical holes because the penetration of coolant is reduced and the lateral spreading of coolant is promoted. For rows of film cooling holes, the film cooling performance decreases with increasing blowing rate. However, the difference of hole shapes and blowing rates for film cooling performance is reduced with increasing the row of cooling holes.


Author(s):  
A. Khanicheh ◽  
M. E. Taslim

High component lifetimes of modern gas turbines can be achieved by cooling the airfoils effectively. Film cooling is commonly employed on the airfoils and other engine hot section surfaces in order to protect them from the high thermal stress fields created by exposure to combustion gases. Complex geometries as well as optimized cooling considerations often dictate the use of compound-angled film cooling hole. In the present experimental and computational study, the effects that two different compound angle film cooling hole injection configurations have on film cooling effectiveness are investigated. Film cooling effectiveness measurements have been made downstream of a single row of compound angle cylindrical holes with a diameter of 7.5 mm, and a single row of compound angle, diffuser-shaped holes with an inlet diameter of 7.5 mm. The cylindrical holes were inclined (α=25°) with respect to the coverage surface and were oriented perpendicular to the high-temperature airflow direction. The diffuser-shaped holes had a compound angle of 45 degrees with respect to the high temperature air flow direction and, similar to the cylindrical film holes, a 25-deg angle with the coverage surface. Both geometries were tested over a blowing ratio range of 0.7 to 4.0. Surface temperatures were measured along four longitudinal rows of thermocouples covering the downstream area between two adjacent holes. The results showed that the best overall protection over the widest range of blowing ratios was provided by the diffuser-shaped film cooling holes. Compared with the cylindrical hole results, the diffuser-shaped expansion holes produced higher film cooling effectiveness downstream of the film cooling holes, particularly at high blowing ratios. The increased cross sectional area at the shaped hole exit compared to that of the cylindrical hole lead to a reduction of the mean velocity, thus the reduction of the momentum flux of the jet exiting the hole. Therefore, the penetration of the jet into the main flow was reduced, resulting in an increased cooling effectiveness. A commercially available CFD software package was used to study film cooling effectiveness downstream of the row of holes. Comparisons between the experimentally measured and numerically calculated film effectiveness distributions showed that the computed results are in reasonable agreement with the measured results. Therefore, CFD can be considered as a viable tool to predict the cooling performance of different film cooling configurations in a parametric study. A more realistic turbulence model, possibly adopting a two-layer model that incorporates boundary layer anisotropy, in the computational study may improve the predicted results.


Author(s):  
Jeffrey P. Bons ◽  
Charles D. MacArthur ◽  
Richard B. Rivir

This study investigated the adiabatic wall cooling effectiveness of a single row of film cooling boles injecting into a turbulent flat plate boundary layer below a turbulent, zero pressure gradient freestream. Levels of freestream turbulence (Tu) up to 17.4% were generated using a method which simulates conditions at a gas turbine combustor exit. Film cooling was injected from a single row of five 35 degree slant-hole injectors (length/diameter = 3.5. pitch/diameter = 3.0) at blowing ratios from 0.55 to 1.85 and at a nearly constant density ratio (coolant density/freestream density) of 0.95. Film cooling effectiveness data is presented for Tu levels ranging from 0.9% to 17% at a constant freestream Reynolds number based on injection hole diameter of 19000. Results show that elevated levels of freestream turbulence reduce film cooling effectiveness by up to 70% in the region directly downstream of the injection hole due to enhanced mixing. At the same time, high freestream turbulence also produces a 50–100% increase in film cooling effectiveness in the region between injection boles. This is due to accelerated spanwise diffusion of the cooling fluid, which also produces an earlier merger of the coolant jets from adjacent holes.


Author(s):  
Sridharan Ramesh ◽  
Chris LeBlanc ◽  
Srinath V. Ekkad ◽  
Mary Anne Alvin

Film cooling performance depends strongly on the hole exit geometry, blowing ratio, and hole location. The goal of this study is to evaluate film cooling geometries that can provide better protection over the suction surface of the airfoil beyond the throat region. This study compares the performance of standard cylindrical; fan-shaped (10° flare/laidback); tripod hole geometry (15° breakout angle); and tripod holes with shaped exits (5° flare on 15° tripod). Film cooling holes are located just upstream of the throat region on the suction side of an airfoil. The airfoil is a scaled up first stage vane from GE E3 engine and is mounted on a low speed linear cascade wind tunnel. A range of blowing ratios from 0.5 to 2.0 was covered for a cylindrical hole, while ensuring all other hole geometries run under similar mass flow rate conditions. Steady state IR (Infra-Red) technique was employed to measure adiabatic film cooling effectiveness. Results show that the tripod holes with and without shaped exits provide much higher film effectiveness than cylindrical and slightly higher effectiveness than shaped exit holes using 50% lesser cooling air while operating at the same blowing ratios. Effectiveness values up to 0.2–0.25 are seen 40-hole diameters downstream for the tripod hole configurations thus providing cooling in the important trailing edge portion of the airfoil.


Sign in / Sign up

Export Citation Format

Share Document