Volume 2C: Turbomachinery
Latest Publications


TOTAL DOCUMENTS

86
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791849712

Author(s):  
Maxime Moret ◽  
Alexandre Delecourt ◽  
Hany Moustapha ◽  
Francois Garnier ◽  
Acher-Igal Abenhaim

The use of Multidisciplinary Design Optimization (MDO) techniques at the preliminary design phase (PMDO) of a gas turbine engine allows investing more effort at the pre-detailed phase in order to prevent the selection of an unsatisfactory concept early in the design process. Considering the impact of the turbine tip clearance on an engine’s efficiency, an accurate tool to predict the tip gap is a mandatory step towards the implementation of a full PMDO system for the turbine design. Tip clearance calculation is a good candidate for PMDO technique implementation considering that it implies various analyses conducted on both the rotor and stator. As a first step to the development of such tip clearance calculator satisfying PMDO principles, the present work explores the automation feasibility of the whole analysis phase of a turbine rotor preliminary design process and the potential increase in the accuracy of results and time gains. The proposed conceptual system integrates a thermal boundary conditions automated calculator and interacts with a simplified air system generator and with several conception tools based on parameterized CAD models. Great improvements were found when comparing this work’s analysis results with regular pre-detailed level tools, as they revealed to be close to the one generated by the detailed design tools used as target. Moreover, this design process revealed to be faster than a common preliminary design phase while leading to a reduction of time spent at the detailed design phase. By requiring fewer user inputs, this system decreases the risk of human errors while entirely leaving the important decisions to the designer.


Author(s):  
Jinlan Gou ◽  
Xinrong Su ◽  
Xin Yuan

There are local flow phenomena like shock wave/boundary interaction and tip leakage flow which strongly influence the compressor performance and stability. AMR (Adaptive Mesh Refinement) strategy shows attractive property for automatically refining local mesh and predicting higher local phenomenon details. This paper develops the AMR strategy for turbomachinery with unstructured mesh. Curved surface boundary matching is focused in AMR process for achieving high level simulation accuracy. The developed AMR strategy is used to improve shock wave prediction in this paper. Firstly two dimensional RANS simulation of compressor cascade L030-4 is conducted to test the AMR strategy. Refined mesh shows better shock wave details compared with the almost none shock wave structure of baseline mesh. Then quasi-3D DDES (Delayed Detached Eddy Simulation) simulation of this compressor cascade is conducted. Shock wave oscillation phenomenon is clearly shown for this cascade. Local mesh of shock wave oscillation region is automatically refined by AMR. The refined mesh predicts better shock wave details and better turbulence motion comparing to the baseline mesh.


Author(s):  
Marcus Lejon ◽  
Niklas Andersson ◽  
Tomas Grönstedt ◽  
Lars Ellbrant ◽  
Hans Mårtensson

Surface degradation in an axial compressor during its lifetime can have a considerable adverse effect on its performance. The present study investigates how the optimized design of compressor blades in a single compressor stage is affected by considering a high level of surface roughness on a level representative of a long period of in-service use. It is shown that including surface roughness in the optimization process is of relatively little importance, however, matching of compressor stages is shown to require consideration as the rotational speed must be increased to reach the design point as surface quality decrease. An increased surface roughness in itself is shown to have a large effect on performance. Two optimization approaches are compared. The first approach considers the compressor blades to be hydraulically smooth. The designs obtained from this approach are subsequently degraded by increasing the level of surface roughness. The compressor blades from the first approach are compared to designs obtained from a second optimization approach, which considers a high level of surface roughness from the outset. The degraded compressor stages from the first approach are shown to be among the best performing designs in terms of polytropic efficiency and stability when compared to designs obtained with the second approach.


Author(s):  
M. H. Noorsalehi ◽  
M. Nili-Ahamadabadi ◽  
E. Shirani ◽  
M. Safari

In this study, a new inverse design method called Elastic Surface Algorithm (ESA) is developed and enhanced for axial-flow compressor blade design in subsonic and transonic flow regimes with separation. ESA is a physically based iterative inverse design method that uses a 2D flow analysis code to estimate the pressure distribution on the solid structure, i.e. airfoil, and a 2D solid beam finite element code to calculate the deflections due to the difference between the calculated and target pressure distributions. In order to enhance the ESA, the wall shear stress distribution, besides pressure distribution, is applied to deflect the shape of the airfoil. The enhanced method is validated through the inverse design of the rotor blade of the first stage of an axial-flow compressor in transonic viscous flow regime. In addition, some design examples are presented to prove the effectiveness and robustness of the method. The results of this study show that the enhanced Elastic Surface Algorithm is an effective inverse design method in flow regimes with separation and normal shock.


Author(s):  
Kevin Cremanns ◽  
Dirk Roos ◽  
Simon Hecker ◽  
Peter Dumstorff ◽  
Henning Almstedt ◽  
...  

The demand for energy is increasingly covered through renewable energy sources. As a consequence, conventional power plants need to respond to power fluctuations in the grid much more frequently than in the past. Additionally, steam turbine components are expected to deal with high loads due to this new kind of energy management. Changes in steam temperature caused by rapid load changes or fast starts lead to high levels of thermal stress in the turbine components. Therefore, todays energy market requires highly efficient power plants which can be operated under flexible conditions. In order to meet the current and future market requirements, turbine components are optimized with respect to multi-dimensional target functions. The development of steam turbine components is a complex process involving different engineering disciplines and time-consuming calculations. Currently, optimization is used most frequently for subtasks within the individual discipline. For a holistic approach, highly efficient calculation methods, which are able to deal with high dimensional and multidisciplinary systems, are needed. One approach to solve this problem is the usage of surrogate models using mathematical methods e.g. polynomial regression or the more sophisticated Kriging. With proper training, these methods can deliver results which are nearly as accurate as the full model calculations themselves in a fraction of time. Surrogate models have to face different requirements: the underlying outputs can be, for example, highly non-linear, noisy or discontinuous. In addition, the surrogate models need to be constructed out of a large number of variables, where often only a few parameters are important. In order to achieve good prognosis quality only the most important parameters should be used to create the surrogate models. Unimportant parameters do not improve the prognosis quality but generate additional noise to the approximation result. Another challenge is to achieve good results with as little design information as possible. This is important because in practice the necessary information is usually only obtained by very time-consuming simulations. This paper presents an efficient optimization procedure using a self-developed hybrid surrogate model consisting of moving least squares and anisotropic Kriging. With its maximized prognosis quality, it is capable of handling the challenges mentioned above. This enables time-efficient optimization. Additionally, a preceding sensitivity analysis identifies the most important parameters regarding the objectives. This leads to a fast convergence of the optimization and a more accurate surrogate model. An example of this method is shown for the optimization of a labyrinth shaft seal used in steam turbines. Within the optimization the opposed objectives of minimizing leakage mass flow and decreasing total enthalpy increase due to friction are considered.


Author(s):  
Susumu Teramoto ◽  
Takuya Ouchi ◽  
Hiroki Sanada ◽  
Koji Okamoto

Fully resolved large eddy simulation (LES) is applied to two simple geometry flowfields with well-defined boundary conditions. The LES results are compared with simulations based on a Reynolds-averaged Navier-Stokes (RANS) model with turbulence, and pros and cons of using high-resolution LES for turbomachinery flows are discussed. One flow is a linear compressor cascade flow composed of the tip section of GE rotor B at Rec = 4 × 105 with a clearance, and the other is a Mach 1.76 supersonic turbulent boundary layer at Reδ = 5000 that laminerizes through a 12-degree expansion corner. The grids are prepared fine enough to resolve the turbulent boundary layer through a grid sensitivity study. The liner cascade result shows that all the turbulent shear layers and boundary layers including those in the small tip clearance are well resolved with 800 million grid points. The Reynolds stress derived from the LES results are compared directly with those predicted from the Spalart-Allmaras one-equation RANS turbulence model. The two results agreed qualitatively well except for the shear layer surrounding the tip leakage vortex, demonstrating that the RANS model performs well at least for flowfields near the design condition. From the simulation of the turbulent boundary layer experiencing sudden expansion, noticeable decreases of both Reynolds stress and local friction coefficient were observed, showing that the turbulent boundary layer has relaminarized through the sudden expansion. The boundary layer downstream of the expansion exhibits a nonequilibrium condition and was different from the laminar boundary layer.


Author(s):  
Wu Xiaoxiong ◽  
Bo Liu ◽  
Shi Lei ◽  
Zhang Guochen ◽  
Mao Xiaochen

In this paper, an improved streamline curvature (SLC) approach is presented to obtain the internal flow fields and evaluate the performance of transonic axial compressors. The approach includes some semi-empirical correlations established based on previous literatures, such as minimum loss incidence angle model, deviation model and total pressure loss model. Several developments have been made in this paper for the purpose of considering the influences of three-dimensional (3D) flow in high-loaded multistage compressors with high accuracy. A revised deviation model is applied to predict the cascade with large deflection range. The method for predicting the shock loss is also discussed in detail. In order to validate the reliability of the approach, two test cases including a two-stage transonic fan and a three-stage transonic compressor are conducted. The overall performance and distribution of spanwise aerodynamic parameters are illustrated in this paper. Compared with both the experimental and computational fluid dynamic (CFD) data at design and a number of different off-design condition, the SLC results give reasonable characteristic curves. The validation demonstrates that this improved approach can serve as a fast and reliable tool for flow field analysis and performance prediction in preliminary design stage of axial compressors.


Author(s):  
Stefano Vagnoli ◽  
Tom Verstraete ◽  
Charlie Koupper ◽  
Guillaume Bonneau

Modern Lean Burn combustors generate a complex field at the High Pressure turbine (HPT) inlet, characterized by non-uniform velocity and temperature distributions, together with very high turbulence levels (up to 25%). For these extreme conditions, classical numerical methods employed for the HPT design, such as Reynolds Averaged Navier Stokes (RANS) simulation, suffer from a lack of validation. This leads to a reduced confidence in predicting the combustor-turbine interactions, which requires to use extra safety margins, to the detriment of the overall engine performance. Within the European FACTOR project, a 360° non reactive combustor simulator and a 1.5 HPT stage are designed to get more insight into the mutual interaction of these two components. A first experimental and numerical campaign has demonstrated the potential of Large Eddy Simulations (LES) to accurately reproduce the turbulent flow field development at the combustor outlet. The aim of the present paper is to exploit the accuracy of LES to validate less time-consuming RANS models in predicting the hot streak migration in the turbine stage. In this sense, LES results are used as a reference to discriminate the different RANS simulations in terms of turbulence modeling and aerothermal predictions. The current investigations clearly indicate that turbulence and hot streak diffusion within the HPT are strongly linked. In this sense, the choice of the RANS turbulence model and the inlet turbulent conditions plays a major role in modeling the thermal behavior for the stator and rotor blades.


Author(s):  
Xiaojian Li ◽  
Yijia Zhao ◽  
Zhengxian Liu ◽  
Hua Chen

Centrifugal compressors with high aerodynamic performance are widely used in turbochargers, aero-engines and petrochemical engineering. The impeller is the core component and plays a key role in determining the compressor performance. This paper reports the optimisation of the aerodynamic performance of an industrial centrifugal impeller by a multi-objective evolutionary strategy. Firstly the 3-D modeling method for parameterisation of impeller’s geometry was described. Secondly the traditional NSGA-II method was modified to improve its ability and efficiency. Employed CFD code was first validated using the experimental data of an existing impeller. The optimisation was applied to the industrial centrifugal impeller through a two-step optimization process to allow for significant variations of the impeller geometry and speedy finding of the optimum. The optimisation was completed within 53 hours on a workstation with two 24-core processors (Xeon(R) E5-2670 v3 2.3GHz). The results indicated that the isentropic efficiency of the impeller increased by 5.3 percents and the total pressure ratio by 20.5 percents at design condition.


Sign in / Sign up

Export Citation Format

Share Document